import numpy as np from numpy import linalg import common class Filter(object): def __init__(self, b, a): self.b = np.array(b) / a[0] self.a = np.array(a[1:]) / a[0] def __call__(self, x): x_ = [0] * len(self.b) y_ = [0] * len(self.a) for v in x: x_ = [v] + x_[:-1] y = np.dot(x_, self.b) - np.dot(y_, self.a) y_ = [y] + y_[1:] yield y def train(S, training): A = np.array([S[1:], S[:-1], training[:-1]]).T b = training[1:] b0, b1, a1 = linalg.lstsq(A, b)[0] return Filter(b=[b0, b1], a=[1, -a1]) class QAM(object): def __init__(self, symbols): self._enc = {} symbols = np.array(list(symbols)) bits_per_symbol = np.log2(len(symbols)) bits_per_symbol = np.round(bits_per_symbol) N = (2 ** bits_per_symbol) assert N == len(symbols) bits_per_symbol = int(bits_per_symbol) for i, v in enumerate(symbols): bits = tuple(int(i & (1 << j) != 0) for j in range(bits_per_symbol)) self._enc[bits] = v self._dec = {v: k for k, v in self._enc.items()} self.symbols = symbols self.bits_per_symbol = bits_per_symbol def encode(self, bits): for _, bits_tuple in common.iterate(bits, self.bits_per_symbol, tuple): yield self._enc[bits_tuple] def decode(self, symbols, error_handler=None): for s in symbols: index = np.argmin(np.abs(s - self.symbols)) S = self.symbols[index] if error_handler: error_handler(received=s, decoded=S) yield self._dec[S] modulator = QAM(common.symbols) bits_per_baud = modulator.bits_per_symbol * len(common.frequencies) modem_bps = common.baud * bits_per_baud def clip(x, lims): return min(max(x, lims[0]), lims[1]) def power(x): return np.dot(x.conj(), x).real / len(x) def exp_iwt(freq, n): iwt = 2j * np.pi * freq * np.arange(n) * common.Ts return np.exp(iwt) def norm(x): return np.sqrt(np.dot(x.conj(), x).real) def coherence(x, freq): n = len(x) Hc = exp_iwt(-freq, n) / np.sqrt(0.5*n) return np.dot(Hc, x) / norm(x) def extract_symbols(x, freq, offset=0): Hc = exp_iwt(-freq, common.Nsym) / (0.5*common.Nsym) func = lambda y: np.dot(Hc, y) iterator = common.iterate(x, common.Nsym, func=func) for _, symbol in iterator: yield symbol def drift(S): x = np.arange(len(S)) x = x - np.mean(x) y = np.unwrap(np.angle(S)) / (2*np.pi) mean_y = np.mean(y) y = y - mean_y a = np.dot(x, y) / np.dot(x, x) return a, mean_y