from numpy.linalg import norm from numpy.random import RandomState import numpy as np from amodem import dsp from amodem import equalizer from amodem import config config = config.fastest() def assert_approx(x, y, e=1e-12): assert norm(x - y) < e * norm(x) def test_training(): L = 1000 e = equalizer.Equalizer(config) t1 = e.train_symbols(L) t2 = e.train_symbols(L) assert (t1 == t2).all() def test_commutation(): x = np.random.RandomState(seed=0).normal(size=1000) b = [1, 1j, -1, -1j] a = [1, 0.1] y = dsp.lfilter(x=x, b=b, a=a) y1 = dsp.lfilter(x=dsp.lfilter(x=x, b=b, a=[1]), b=[1], a=a) y2 = dsp.lfilter(x=dsp.lfilter(x=x, b=[1], a=a), b=b, a=[1]) assert_approx(y, y1) assert_approx(y, y2) z = dsp.lfilter(x=y, b=a, a=[1]) z_ = dsp.lfilter(x=x, b=b, a=[1]) assert_approx(z, z_) def test_modem(): L = 1000 e = equalizer.Equalizer(config) sent = e.train_symbols(L) gain = config.Nfreq x = e.modulator(sent) * gain received = e.demodulator(x, L) assert_approx(sent, received) def test_signal(): length = 100 x = np.sign(RandomState(0).normal(size=length)) den = np.array([1, -0.6, 0.1]) num = np.array([0.5]) y = dsp.lfilter(x=x, b=num, a=den) lookahead = 2 h = equalizer.train( signal=y, expected=x, order=len(den), lookahead=lookahead) assert norm(h[:lookahead]) < 1e-12 h = h[lookahead:] assert_approx(h, den / num) x_ = dsp.lfilter(x=y, b=h, a=[1]) assert_approx(x_, x)