import numpy as np from numpy import linalg def lfilter(b, a, x): b = np.array(b) / a[0] a = np.array(a[1:]) / a[0] x_ = [0] * len(b) y_ = [0] * len(a) for v in x: x_ = [v] + x_[:-1] u = np.dot(x_, b) u = u - np.dot(y_, a) y_ = [u] + y_[1:] yield u class Filter(object): def __init__(self, b, a): self.b = b self.a = a def apply(self, x): return lfilter(self.b, self.a, x) @classmethod def train(cls, S, training): A = np.array([ S[1:], S[:-1], training[:-1] ]).T b = training[1:] b0, b1, a1 = linalg.lstsq(A, b)[0] return cls([b0, b1], [1, -a1]) class QAM(object): def __init__(self, bits_per_symbol, radii): self._enc = {} index = 0 N = (2 ** bits_per_symbol) / len(radii) for a in radii: for i in range(N): k = tuple(int(index & (1 << j) != 0) for j in range(bits_per_symbol)) v = np.exp(2j * i * np.pi / N) self._enc[k] = v * a index += 1 self._dec = {v: k for k, v in self._enc.items()} self.points = self._enc.values() self.bits_per_symbol = bits_per_symbol def encode(self, bits): trailing_bits = len(bits) % self.bits_per_symbol bits = bits + [0] * (self.bits_per_symbol - trailing_bits) for i in range(0, len(bits), self.bits_per_symbol): s = self._enc[ tuple(bits[i:i+self.bits_per_symbol]) ] yield s def decode(self, symbols): keys = np.array(self._dec.keys()) for s in symbols: index = np.argmin(np.abs(s - keys)) yield self._dec[ keys[index] ] modulator = QAM(bits_per_symbol=4, radii=[0.6, 1.0]) def test(): q = QAM(bits_per_symbol=2) bits = [1,1, 0,1, 0,0, 1,0] S = qpsk.encode(bits) assert list(qpsk.decode(list(S))) == bits