Files
amodem/recv.py
2014-07-22 14:20:02 +03:00

211 lines
5.6 KiB
Python
Executable File

#!/usr/bin/env python
import numpy as np
import logging
import itertools
import time
import os
log = logging.getLogger(__name__)
import sigproc
import loop
import train
from common import *
if os.environ.get('PYLAB') is not None:
import pylab
import show
WIDTH = np.floor(np.sqrt(len(frequencies)))
HEIGHT = np.ceil(len(frequencies) / float(WIDTH))
else:
pylab = None
COHERENCE_THRESHOLD = 0.95
CARRIER_DURATION = sum(train.prefix)
CARRIER_THRESHOLD = int(0.95 * CARRIER_DURATION)
def detect(x, freq):
counter = 0
for offset, buf in iterate(x, Nsym, advance=Nsym):
coeff = sigproc.coherence(buf, Fc)
if abs(coeff) > COHERENCE_THRESHOLD:
counter += 1
else:
counter = 0
if counter == CARRIER_THRESHOLD:
length = CARRIER_THRESHOLD * Nsym
return offset - length + Nsym, offset
def find_start(x, start):
WINDOW = Nsym * 10
length = CARRIER_DURATION * Nsym
begin, end = start - WINDOW, start + length + WINDOW
x_ = x[begin:end]
Hc = sigproc.exp_iwt(Fc, len(x_))
P = np.abs(Hc.conj() * x_) ** 2
cumsumP = P.cumsum()
start = begin + np.argmax(cumsumP[length:] - cumsumP[:-length])
log.info('Carrier starts at {:.3f} ms'.format(start * Tsym * 1e3 / Nsym))
return start
def take(symbols, i, n):
symbols = itertools.islice(symbols, n)
return np.array([(s if (i is None) else s[i]) for s in symbols])
def receive_prefix(symbols):
S = take(symbols, carrier_index, len(train.prefix))
y = np.abs(S)
bits = np.round(y)
bits = np.array(bits, dtype=int)
if all(bits != train.prefix):
raise ValueError('Incorrect prefix')
log.info('Prefix OK')
pilot_tone = S[np.array(train.prefix, dtype=bool)]
err = sigproc.drift(pilot_tone) / (Tsym * Fc)
log.info('Frequency error: %.2f ppm', err * 1e6)
return err
def train_receiver(symbols, freqs):
filters = {}
full_scale = len(freqs)
training_bits = np.array(train.equalizer)
expected = full_scale * training_bits
if pylab:
pylab.figure()
for i, freq in enumerate(freqs):
S = take(symbols, i, len(expected))
filt = sigproc.train(S, expected)
filters[freq] = filt
S = filt(S)
y = np.array(list(S)).real
if pylab:
pylab.subplot(HEIGHT, WIDTH, i+1)
pylab.plot(y, '-', expected, '-')
pylab.title('Train: $F_c = {}Hz$'.format(freq))
train_result = y > 0.5 * full_scale
if not all(train_result == training_bits):
return ValueError('#{} training failed on {} Hz'.format(i, freq))
noise = y - expected
Pnoise = sigproc.power(noise)
log.info('%10.1f kHz: Noise sigma=%.4f, SNR=%.1f dB',
freq/1e3, Pnoise**0.5, 10*np.log10(1/Pnoise))
return filters
def demodulate(symbols, filters, freqs):
streams = []
symbol_list = []
generators = split(symbols, n=len(freqs))
for freq, S in zip(freqs, generators):
S = filters[freq](S)
equalized = []
S = icapture(S, result=equalized)
symbol_list.append(equalized)
bits = sigproc.modulator.decode(S) # list of bit tuples
streams.append(bits)
log.info('Demodulation started')
bitstream = []
start = time.time()
for block in itertools.izip(*streams):
for bits in block:
bitstream.extend(bits)
log.info('Demodulated %d bits : %.3f kB @ %.3f seconds',
len(bitstream), len(bitstream) / 8e3, time.time() - start)
if pylab:
pylab.figure()
symbol_list = np.array(symbol_list)
for i, freq in enumerate(freqs):
pylab.subplot(HEIGHT, WIDTH, i+1)
title = '$F_c = {} Hz$'.format(freq)
show.constellation(symbol_list[i], title)
return bitstream
def receive(signal, freqs):
signal = loop.FreqLoop(signal, freqs)
symbols = iter(signal)
err = receive_prefix(symbols)
signal.sampler.freq -= err
filters = train_receiver(symbols, freqs)
return demodulate(symbols, filters, freqs)
def main(fname):
log.info('Running MODEM @ {:.1f} kbps'.format(sigproc.modem_bps / 1e3))
_, x = load(open(fname, 'rb'))
result = detect(x, Fc)
if result is None:
log.info('No carrier detected')
return
begin, end = result
x_ = x[begin:end]
Hc = sigproc.exp_iwt(-Fc, len(x_))
Zc = np.dot(Hc, x_) / (0.5*len(x_))
amp = abs(Zc)
log.info('Carrier detected at ~%.1f ms @ %.1f kHz:'
' coherence=%.3f%%, amplitude=%.3f',
begin * Tsym * 1e3 / Nsym, Fc / 1e3,
np.abs(sigproc.coherence(x_, Fc)) * 100, amp)
start = find_start(x, begin)
x = x[start:]
peak = np.max(np.abs(x))
if peak > SATURATION_THRESHOLD:
raise ValueError('Saturation detected: {:.3f}'.format(peak))
data_bits = receive(x / amp, frequencies)
if data_bits is None:
log.warning('Training failed!')
else:
data = iterate(data_bits, bufsize=8, advance=8, func=to_byte)
data = ''.join(c for _, c in data)
import ecc
data = ecc.decode(data)
if data is None:
log.warning('No blocks decoded!')
return
log.info('Decoded %.3f kB', len(data) / 1e3)
with file('data.recv', 'wb') as f:
f.write(data)
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)-12s %(message)s')
import argparse
p = argparse.ArgumentParser()
p.add_argument('fname')
args = p.parse_args()
main(fname=args.fname)
if pylab:
pylab.show()