mirror of
https://github.com/romanz/amodem.git
synced 2026-02-08 02:18:00 +08:00
142 lines
3.8 KiB
Python
142 lines
3.8 KiB
Python
import numpy as np
|
|
import itertools
|
|
|
|
import recv
|
|
import common
|
|
|
|
class Filter(object):
|
|
def __init__(self, b, a):
|
|
self.b = b
|
|
self.a = a
|
|
self.x = [0] * len(b)
|
|
self.y = [0] * len(a)
|
|
|
|
def __call__(self, x):
|
|
self.x = [x] + self.x[:-1]
|
|
assert len(self.x) == len(self.b)
|
|
assert len(self.y) == len(self.a)
|
|
y = np.dot(self.x, self.b) - np.dot(self.y, self.a)
|
|
self.y = [y] + self.y[:-1]
|
|
return y
|
|
|
|
def overlap_iter(x, n, overlap=0):
|
|
assert overlap >= 0
|
|
assert overlap < n
|
|
res = []
|
|
x = iter(x)
|
|
while True:
|
|
res.extend(itertools.islice(x, n - len(res)))
|
|
if len(res) < n:
|
|
break
|
|
yield tuple(res)
|
|
res = res[n - overlap:]
|
|
|
|
def test_overlap():
|
|
assert list(overlap_iter(range(7), 3, 1)) == [(0,1,2), (2,3,4), (4,5,6)]
|
|
assert list(overlap_iter(range(7), 3, 0)) == [(0,1,2), (3,4,5)]
|
|
|
|
def calib(S):
|
|
for S0, S1 in overlap_iter(S, 2, overlap=1):
|
|
dS = S1 / S0
|
|
yield dS
|
|
|
|
class Interpolator(object):
|
|
def __init__(self, resolution=1000, width=20):
|
|
self.width = width
|
|
self.resolution = resolution
|
|
self.N = resolution * width
|
|
u = np.arange(-self.N, self.N, dtype=float)
|
|
window = (1 + np.cos(0.5 * np.pi * u / self.N)) / 2.0
|
|
h = np.sinc(u / resolution) * window
|
|
self.filt = []
|
|
for index in range(resolution): # split into multiphase filters
|
|
filt = h[index::resolution]
|
|
filt = filt[::-1]
|
|
self.filt.append(filt)
|
|
lengths = map(len, self.filt)
|
|
assert set(lengths) == set([2*width])
|
|
assert len(self.filt) == resolution
|
|
|
|
def get(self, offset):
|
|
# offset = k + (j / self.resolution)
|
|
k = int(offset)
|
|
j = int((offset - k) * self.resolution)
|
|
coeffs = self.filt[j]
|
|
return coeffs, k - self.width
|
|
|
|
class Sampler(object):
|
|
def __init__(self, src, interp=None):
|
|
self.src = iter(src)
|
|
self.index = 0
|
|
self.freq = 1.0
|
|
self.interp = interp or Interpolator()
|
|
self.offset = self.interp.width
|
|
self.buff = []
|
|
|
|
def sample(self):
|
|
coeffs, begin = self.interp.get(self.offset)
|
|
end = begin + len(coeffs)
|
|
# C = ', '.join(['%.3f' % c for c in coeffs[18:23]])
|
|
# print '%.3f [%s] %d %d' % (self.offset, C, begin, end)
|
|
while True:
|
|
if self.index == end:
|
|
self.buff = self.buff[-len(coeffs):]
|
|
return np.dot(coeffs, self.buff)
|
|
try:
|
|
s = self.src.next()
|
|
except StopIteration:
|
|
break
|
|
|
|
self.buff.append(s)
|
|
self.index += 1
|
|
|
|
def next(self):
|
|
self.offset += self.freq
|
|
|
|
|
|
def main():
|
|
import pylab
|
|
if 1:
|
|
f0 = 10e3
|
|
_, x = common.load('recv_10kHz.pcm')
|
|
x = x[100:]
|
|
y = []
|
|
sampler = Sampler(x)
|
|
sampler.freq = 1.0 + 0.112/f0
|
|
while True:
|
|
u = sampler.sample()
|
|
if u is None:
|
|
break
|
|
y.append(u)
|
|
sampler.next()
|
|
x_ = np.array(y)
|
|
S = recv.extract_symbols(x_, f0)
|
|
S = np.array(list(S))
|
|
|
|
y = S #np.array(list(calib(S)))
|
|
phase = np.unwrap(np.angle(y))
|
|
|
|
phase_error = (phase[-1] - phase[0])
|
|
phase_error_per_1ms = phase_error / (len(phase) - 1)
|
|
freq_error = phase_error_per_1ms * 1000.0 / (2 * np.pi)
|
|
print phase_error, len(phase)
|
|
print phase_error_per_1ms
|
|
print freq_error
|
|
|
|
if 1:
|
|
pylab.figure()
|
|
pylab.plot(y.real, y.imag, '.')
|
|
pylab.grid('on')
|
|
pylab.show()
|
|
return
|
|
|
|
I = Interpolator()
|
|
f = I.filt
|
|
pylab.figure()
|
|
pylab.plot(zip(*f[::100]))
|
|
pylab.show()
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|