mirror of
https://github.com/romanz/amodem.git
synced 2026-02-07 01:18:02 +08:00
84 lines
2.1 KiB
Python
84 lines
2.1 KiB
Python
from numpy.linalg import norm
|
|
import numpy as np
|
|
|
|
from amodem import train, dsp, config
|
|
from amodem import equalizer
|
|
|
|
|
|
def assert_approx(x, y, e=1e-12):
|
|
assert norm(x - y) < e * norm(x)
|
|
|
|
|
|
def test_fir():
|
|
a = [1, 0.8, -0.1, 0, 0]
|
|
tx = train.equalizer
|
|
rx = dsp.lfilter(x=tx, b=[1], a=a)
|
|
h_ = dsp.estimate(x=rx, y=tx, order=len(a))
|
|
tx_ = dsp.lfilter(x=rx, b=h_, a=[1])
|
|
assert_approx(h_, a)
|
|
assert_approx(tx, tx_)
|
|
|
|
|
|
def test_iir():
|
|
alpha = 0.1
|
|
b = [1, -alpha]
|
|
tx = train.equalizer
|
|
rx = dsp.lfilter(x=tx, b=b, a=[1])
|
|
h_ = dsp.estimate(x=rx, y=tx, order=20)
|
|
tx_ = dsp.lfilter(x=rx, b=h_, a=[1])
|
|
|
|
h_expected = np.array([alpha ** i for i in range(len(h_))])
|
|
assert_approx(h_, h_expected)
|
|
assert_approx(tx, tx_)
|
|
|
|
|
|
def test_training():
|
|
L = 1000
|
|
t1 = equalizer.train_symbols(L)
|
|
t2 = equalizer.train_symbols(L)
|
|
assert (t1 == t2).all()
|
|
|
|
|
|
def test_commutation():
|
|
x = np.random.RandomState(seed=0).normal(size=1000)
|
|
b = [1, 1j, -1, -1j]
|
|
a = [1, 0.1]
|
|
y = dsp.lfilter(x=x, b=b, a=a)
|
|
y1 = dsp.lfilter(x=dsp.lfilter(x=x, b=b, a=[1]), b=[1], a=a)
|
|
y2 = dsp.lfilter(x=dsp.lfilter(x=x, b=[1], a=a), b=b, a=[1])
|
|
assert_approx(y, y1)
|
|
assert_approx(y, y2)
|
|
|
|
z = dsp.lfilter(x=y, b=a, a=[1])
|
|
z_ = dsp.lfilter(x=x, b=b, a=[1])
|
|
assert_approx(z, z_)
|
|
|
|
|
|
def test_modem():
|
|
L = 1000
|
|
sent = equalizer.train_symbols(L)
|
|
gain = config.Nfreq
|
|
x = equalizer.modulator(sent) * gain
|
|
received = equalizer.demodulator(x, L)
|
|
assert_approx(sent, received)
|
|
|
|
|
|
def test_isi():
|
|
length = 100
|
|
gain = float(config.Nfreq)
|
|
|
|
symbols = equalizer.train_symbols(length=length)
|
|
x = equalizer.modulator(symbols)
|
|
assert_approx(equalizer.demodulator(gain * x, size=length), symbols)
|
|
|
|
den = np.array([1, -0.6, 0.1])
|
|
num = np.array([0.5])
|
|
y = dsp.lfilter(x=x, b=num, a=den)
|
|
|
|
h = equalizer.equalize(y, symbols, order=len(den))
|
|
assert_approx(h, den / num)
|
|
|
|
y = dsp.lfilter(x=y, b=h, a=[1])
|
|
z = equalizer.demodulator(gain * y, size=length)
|
|
assert_approx(z, symbols)
|