Files
amodem/tests/test_transfer.py
2015-01-13 13:02:22 +02:00

105 lines
2.3 KiB
Python

import os
from io import BytesIO
import numpy as np
from amodem import send
from amodem import recv
from amodem import common
from amodem import dsp
from amodem import sampling
from amodem import config
config = config.fastest()
import logging
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)-12s %(message)s')
import pytest
class Args(object):
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def __getattr__(self, name):
return None
def run(size, chan=None, df=0, success=True):
tx_data = os.urandom(size)
tx_audio = BytesIO()
send.main(config=config, src=BytesIO(tx_data), dst=tx_audio)
data = tx_audio.getvalue()
data = common.loads(data)
if chan is not None:
data = chan(data)
if df:
sampler = sampling.Sampler(data, sampling.Interpolator())
sampler.freq += df
data = sampler.take(len(data))
data = common.dumps(data)
rx_audio = BytesIO(data)
rx_data = BytesIO()
d = BytesIO()
result = recv.main(config=config, src=rx_audio, dst=rx_data, dump_audio=d)
rx_data = rx_data.getvalue()
assert data.startswith(d.getvalue())
assert result == success
if success:
assert rx_data == tx_data
@pytest.fixture(params=[0, 1, 3, 10, 42, 123])
def small_size(request):
return request.param
def test_small(small_size):
run(small_size, chan=lambda x: x)
def test_error():
skip = 32000 # remove trailing silence
run(1024, chan=lambda x: x[:-skip], success=False)
@pytest.fixture(params=[sign * drift for sign in (+1, -1)
for drift in (0.1, 1, 10, 100)])
def freq_err(request):
return request.param * 1e-6
def test_timing(freq_err):
run(8192, df=freq_err)
def test_lowpass():
run(1024, chan=lambda x: dsp.lfilter(b=[0.9], a=[1.0, -0.1], x=x))
def test_highpass():
run(1024, chan=lambda x: dsp.lfilter(b=[0.9], a=[1.0, 0.1], x=x))
def test_attenuation():
run(5120, chan=lambda x: x * 0.1)
def test_low_noise():
r = np.random.RandomState(seed=0)
run(5120, chan=lambda x: x + r.normal(size=len(x), scale=0.0001))
def test_medium_noise():
r = np.random.RandomState(seed=0)
run(5120, chan=lambda x: x + r.normal(size=len(x), scale=0.001))
def test_large():
run(54321, chan=lambda x: x)