Files
amodem/amodem/equalizer.py
2015-01-16 10:31:42 +02:00

66 lines
1.7 KiB
Python

import numpy as np
from numpy.linalg import lstsq
from amodem import dsp
from amodem import sampling
import itertools
import random
_constellation = [1, 1j, -1, -1j]
class Equalizer(object):
def __init__(self, config):
self.carriers = config.carriers
self.omegas = 2 * np.pi * np.array(config.frequencies) / config.Fs
self.Nfreq = config.Nfreq
self.Nsym = config.Nsym
def train_symbols(self, length, seed=0):
r = random.Random(seed)
choose = lambda: [r.choice(_constellation) for j in range(self.Nfreq)]
return np.array([choose() for _ in range(length)])
def modulator(self, symbols):
gain = 1.0 / len(self.carriers)
result = []
for s in symbols:
result.append(np.dot(s, self.carriers))
result = np.concatenate(result).real * gain
assert np.max(np.abs(result)) <= 1
return result
def demodulator(self, signal, size):
signal = itertools.chain(signal, itertools.repeat(0))
symbols = dsp.Demux(sampler=sampling.Sampler(signal),
omegas=self.omegas, Nsym=self.Nsym)
return np.array(list(itertools.islice(symbols, size)))
def train(signal, expected, order, lookahead=0):
signal = [np.zeros(order-1), signal, np.zeros(lookahead)]
signal = np.concatenate(signal)
length = len(expected)
A = []
b = []
for i in range(length - order):
offset = order + i
row = signal[offset-order:offset+lookahead]
A.append(np.array(row, ndmin=2))
b.append(expected[i])
A = np.concatenate(A, axis=0)
b = np.array(b)
h = lstsq(A, b)[0]
h = h[::-1].real
return h
prefix = [1]*400 + [0]*50
equalizer_length = 500
silence_length = 100