Files
ggwave/tests/test-ggwave.cpp
2022-05-30 22:52:12 +03:00

318 lines
14 KiB
C++

#include "ggwave/ggwave.h"
#include <cstring>
#include <limits>
#include <string>
#include <typeinfo>
#include <typeindex>
#include <vector>
#include <set>
#include <cstdint>
#include <map>
float frand() { return float(rand()%RAND_MAX)/RAND_MAX; }
#define CHECK(cond) \
if (!(cond)) { \
fprintf(stderr, "[%s:%d] Check failed: %s\n", __FILE__, __LINE__, #cond); \
exit(1); \
}
#define CHECK_T(cond) CHECK(cond)
#define CHECK_F(cond) CHECK(!(cond))
const std::map<std::type_index, float> kSampleScale = {
{ typeid(uint8_t), std::numeric_limits<uint8_t>::max() },
{ typeid(int8_t), std::numeric_limits<int8_t>::max() },
{ typeid(uint16_t), std::numeric_limits<uint16_t>::max() },
{ typeid(int16_t), std::numeric_limits<int16_t>::max() },
{ typeid(float), 1.0f },
};
const std::map<std::type_index, float> kSampleOffset = {
{ typeid(uint8_t), 0.5f*std::numeric_limits<uint8_t>::max() },
{ typeid(int8_t), 0.0f },
{ typeid(uint16_t), 0.5f*std::numeric_limits<uint16_t>::max() },
{ typeid(int16_t), 0.0f },
{ typeid(float), 0.0f },
};
const std::set<GGWave::SampleFormat> kFormats = {
GGWAVE_SAMPLE_FORMAT_U8,
GGWAVE_SAMPLE_FORMAT_I8,
GGWAVE_SAMPLE_FORMAT_U16,
GGWAVE_SAMPLE_FORMAT_I16,
GGWAVE_SAMPLE_FORMAT_F32,
};
template <typename S, typename D>
void convert(std::vector<uint8_t> & src) {
const int n = src.size()/sizeof(S);
std::vector<D> dst(n);
S v;
for (int i = 0; i < n; ++i) {
std::memcpy(&v, &src[i*sizeof(S)], sizeof(S));
dst[i] = ((float(v) - kSampleOffset.at(typeid(S)))/kSampleScale.at(typeid(S)))*kSampleScale.at(typeid(D)) + kSampleOffset.at(typeid(D));
}
src.resize(n*sizeof(D));
std::memcpy(&src[0], &dst[0], n*sizeof(D));
}
int main(int argc, char ** argv) {
bool full = false;
if (argc > 1) {
if (strcmp(argv[1], "--full") == 0) {
full = true;
}
}
std::vector<uint8_t> buffer;
auto convertHelper = [&](GGWave::SampleFormat formatOut, GGWave::SampleFormat formatInp) {
switch (formatOut) {
case GGWAVE_SAMPLE_FORMAT_UNDEFINED: CHECK(false); break;
case GGWAVE_SAMPLE_FORMAT_U8:
{
switch (formatInp) {
case GGWAVE_SAMPLE_FORMAT_UNDEFINED: CHECK(false); break;
case GGWAVE_SAMPLE_FORMAT_U8: break;
case GGWAVE_SAMPLE_FORMAT_I8: convert<uint8_t, int8_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_U16: convert<uint8_t, uint16_t>(buffer); break;
case GGWAVE_SAMPLE_FORMAT_I16: convert<uint8_t, int16_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_F32: convert<uint8_t, float> (buffer); break;
};
} break;
case GGWAVE_SAMPLE_FORMAT_I8:
{
switch (formatInp) {
case GGWAVE_SAMPLE_FORMAT_UNDEFINED: CHECK(false); break;
case GGWAVE_SAMPLE_FORMAT_U8: convert<int8_t, uint8_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_I8: break;
case GGWAVE_SAMPLE_FORMAT_U16: convert<int8_t, uint16_t>(buffer); break;
case GGWAVE_SAMPLE_FORMAT_I16: convert<int8_t, int16_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_F32: convert<int8_t, float> (buffer); break;
};
} break;
case GGWAVE_SAMPLE_FORMAT_U16:
{
switch (formatInp) {
case GGWAVE_SAMPLE_FORMAT_UNDEFINED: CHECK(false); break;
case GGWAVE_SAMPLE_FORMAT_U8: convert<uint16_t, uint8_t>(buffer); break;
case GGWAVE_SAMPLE_FORMAT_I8: convert<uint16_t, int8_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_U16: break;
case GGWAVE_SAMPLE_FORMAT_I16: convert<uint16_t, int16_t>(buffer); break;
case GGWAVE_SAMPLE_FORMAT_F32: convert<uint16_t, float> (buffer); break;
};
} break;
case GGWAVE_SAMPLE_FORMAT_I16:
{
switch (formatInp) {
case GGWAVE_SAMPLE_FORMAT_UNDEFINED: CHECK(false); break;
case GGWAVE_SAMPLE_FORMAT_U8: convert<int16_t, uint8_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_I8: convert<int16_t, int8_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_U16: convert<int16_t, uint16_t>(buffer); break;
case GGWAVE_SAMPLE_FORMAT_I16: break;
case GGWAVE_SAMPLE_FORMAT_F32: convert<int16_t, float> (buffer); break;
};
} break;
case GGWAVE_SAMPLE_FORMAT_F32:
{
switch (formatInp) {
case GGWAVE_SAMPLE_FORMAT_UNDEFINED: CHECK(false); break;
case GGWAVE_SAMPLE_FORMAT_U8: convert<float, uint8_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_I8: convert<float, int8_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_U16: convert<float, uint16_t>(buffer); break;
case GGWAVE_SAMPLE_FORMAT_I16: convert<float, int16_t> (buffer); break;
case GGWAVE_SAMPLE_FORMAT_F32: break;
};
} break;
};
};
auto addNoiseHelper = [&](float level, GGWave::SampleFormat format) {
switch (format) {
case GGWAVE_SAMPLE_FORMAT_UNDEFINED: CHECK(false); break;
case GGWAVE_SAMPLE_FORMAT_U8:
{
const int n = buffer.size()/sizeof(uint8_t);
auto p = (uint8_t *) buffer.data();
for (int i = 0; i < n; ++i) {
p[i] = std::max(0.0f, std::min(255.0f, (float) p[i] + (frand() - 0.5f)*(level*256)));
}
} break;
case GGWAVE_SAMPLE_FORMAT_I8:
{
const int n = buffer.size()/sizeof(int8_t);
auto p = (int8_t *) buffer.data();
for (int i = 0; i < n; ++i) {
p[i] = std::max(-128.0f, std::min(127.0f, (float) p[i] + (frand() - 0.5f)*(level*256)));
}
} break;
case GGWAVE_SAMPLE_FORMAT_U16:
{
const int n = buffer.size()/sizeof(uint16_t);
auto p = (uint16_t *) buffer.data();
for (int i = 0; i < n; ++i) {
p[i] = std::max(0.0f, std::min(65535.0f, (float) p[i] + (frand() - 0.5f)*(level*65536)));
}
} break;
case GGWAVE_SAMPLE_FORMAT_I16:
{
const int n = buffer.size()/sizeof(int16_t);
auto p = (int16_t *) buffer.data();
for (int i = 0; i < n; ++i) {
p[i] = std::max(-32768.0f, std::min(32767.0f, (float) p[i] + (frand() - 0.5f)*(level*65536)));
}
} break;
case GGWAVE_SAMPLE_FORMAT_F32:
{
const int n = buffer.size()/sizeof(float);
auto p = (float *) buffer.data();
for (int i = 0; i < n; ++i) {
p[i] = std::max(-1.0f, std::min(1.0f, p[i] + (frand() - 0.5f)*(level)));
}
} break;
};
};
{
GGWave instance(GGWave::getDefaultParameters());
std::string payload = "hello";
CHECK(instance.init(payload.c_str()));
// data
CHECK_F(instance.init(-1, "asd"));
CHECK_T(instance.init(0, nullptr));
CHECK_T(instance.init(0, "asd"));
CHECK_T(instance.init(1, "asd"));
CHECK_T(instance.init(2, "asd"));
CHECK_T(instance.init(3, "asd"));
// volume
CHECK_F(instance.init(payload.size(), payload.c_str(), -1));
CHECK_T(instance.init(payload.size(), payload.c_str(), 0));
CHECK_T(instance.init(payload.size(), payload.c_str(), 50));
CHECK_T(instance.init(payload.size(), payload.c_str(), 100));
CHECK_F(instance.init(payload.size(), payload.c_str(), 101));
}
// playback / capture at different sample rates
for (int srInp = GGWave::kDefaultSampleRate/6; srInp <= 2*GGWave::kDefaultSampleRate; srInp += 1371) {
printf("Testing: sample rate = %d\n", srInp);
auto parameters = GGWave::getDefaultParameters();
parameters.soundMarkerThreshold = 3.0f;
const std::string payload = "hello123";
// encode
{
parameters.sampleRateOut = srInp;
GGWave instanceOut(parameters);
instanceOut.init(payload.c_str(), instanceOut.getTxProtocol(GGWAVE_TX_PROTOCOL_DT_FASTEST), 25);
const auto expectedSize = instanceOut.encodeSize_bytes();
const auto nBytes = instanceOut.encode();
printf("Expected = %d, actual = %d\n", expectedSize, nBytes);
CHECK(expectedSize >= nBytes);
{ auto p = (const uint8_t *)(instanceOut.txData()); buffer.resize(nBytes); memcpy(buffer.data(), p, nBytes); }
addNoiseHelper(0.01, parameters.sampleFormatOut); // add some artificial noise
convertHelper(parameters.sampleFormatOut, parameters.sampleFormatInp);
}
// decode
{
parameters.sampleRateInp = srInp;
GGWave instanceInp(parameters);
instanceInp.setRxProtocols({instanceInp.getTxProtocol(GGWAVE_TX_PROTOCOL_DT_FASTEST)});
instanceInp.decode(buffer.data(), buffer.size());
GGWave::TxRxData result;
CHECK(instanceInp.takeRxData(result) == (int) payload.size());
for (int i = 0; i < (int) payload.size(); ++i) {
CHECK(payload[i] == result[i]);
}
}
}
const std::string payload = "a0Z5kR2g";
// encode / decode using different sample formats and Tx protocols
for (const auto & formatOut : kFormats) {
for (const auto & formatInp : kFormats) {
if (full == false) {
if (formatOut != GGWAVE_SAMPLE_FORMAT_I16) continue;
if (formatInp != GGWAVE_SAMPLE_FORMAT_F32) continue;
}
for (const auto & txProtocol : GGWave::getTxProtocols()) {
if (txProtocol.enabled == false) continue;
printf("Testing: protocol = %s, in = %d, out = %d\n", txProtocol.name, formatInp, formatOut);
for (int length = 1; length <= (int) payload.size(); ++length) {
// mono-tone protocols with variable length are not supported
if (txProtocol.extra == 2) {
break;
}
// variable payload length
{
auto parameters = GGWave::getDefaultParameters();
parameters.sampleFormatInp = formatInp;
parameters.sampleFormatOut = formatOut;
GGWave instance(parameters);
instance.setRxProtocols({txProtocol});
instance.init(length, payload.data(), txProtocol, 25);
const auto expectedSize = instance.encodeSize_bytes();
const auto nBytes = instance.encode();
printf("Expected = %d, actual = %d\n", expectedSize, nBytes);
CHECK(expectedSize == nBytes);
{ auto p = (const uint8_t *)(instance.txData()); buffer.resize(nBytes); memcpy(buffer.data(), p, nBytes); }
convertHelper(formatOut, formatInp);
instance.decode(buffer.data(), buffer.size());
GGWave::TxRxData result;
CHECK(instance.takeRxData(result) == length);
for (int i = 0; i < length; ++i) {
CHECK(payload[i] == result[i]);
}
}
}
for (int length = 1; length <= (int) payload.size(); ++length) {
// fixed payload length
{
auto parameters = GGWave::getDefaultParameters();
parameters.payloadLength = length;
parameters.sampleFormatInp = formatInp;
parameters.sampleFormatOut = formatOut;
GGWave instance(parameters);
instance.setRxProtocols({txProtocol});
instance.init(length, payload.data(), txProtocol, 10);
const auto expectedSize = instance.encodeSize_bytes();
const auto nBytes = instance.encode();
printf("Expected = %d, actual = %d\n", expectedSize, nBytes);
CHECK(expectedSize == nBytes);
{ auto p = (const uint8_t *)(instance.txData()); buffer.resize(nBytes); memcpy(buffer.data(), p, nBytes); }
convertHelper(formatOut, formatInp);
instance.decode(buffer.data(), buffer.size());
GGWave::TxRxData result;
CHECK(instance.takeRxData(result) == length);
for (int i = 0; i < length; ++i) {
CHECK(payload[i] == result[i]);
}
}
}
}
}
}
return 0;
}