mirror of
https://github.com/romanz/amodem.git
synced 2026-02-07 01:18:02 +08:00
refactor equalizers and its tests
This commit is contained in:
63
amodem/equalizer.py
Normal file
63
amodem/equalizer.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import numpy as np
|
||||
from numpy.linalg import lstsq
|
||||
|
||||
from amodem import dsp, config, send
|
||||
|
||||
import itertools
|
||||
import random
|
||||
|
||||
_constellation = [1, 1j, -1, -1j]
|
||||
|
||||
|
||||
def train_symbols(length, seed=0, Nfreq=config.Nfreq):
|
||||
r = random.Random(seed)
|
||||
choose = lambda: [r.choice(_constellation) for j in range(Nfreq)]
|
||||
return np.array([choose() for i in range(length)])
|
||||
|
||||
|
||||
def modulator(symbols, carriers=send.sym.carrier):
|
||||
gain = 1.0 / len(carriers)
|
||||
result = []
|
||||
for s in symbols:
|
||||
result.append(np.dot(s, carriers))
|
||||
result = np.concatenate(result).real * gain
|
||||
assert np.max(np.abs(result)) <= 1
|
||||
return result
|
||||
|
||||
|
||||
def demodulator(signal, size):
|
||||
signal = itertools.chain(signal, itertools.repeat(0))
|
||||
symbols = dsp.Demux(signal, config.frequencies)
|
||||
return np.array(list(itertools.islice(symbols, size)))
|
||||
|
||||
|
||||
def equalize(signal, symbols, order):
|
||||
Nsym = config.Nsym
|
||||
Nfreq = config.Nfreq
|
||||
carriers = send.sym.carrier
|
||||
|
||||
assert symbols.shape[1] == Nfreq
|
||||
length = symbols.shape[0]
|
||||
|
||||
matched = np.array(carriers) * Nfreq / (0.5*Nsym)
|
||||
matched = matched[:, ::-1].transpose().conj()
|
||||
y = dsp.lfilter(x=signal, b=matched, a=[1])
|
||||
|
||||
A = np.zeros([symbols.size, order], dtype=np.complex128)
|
||||
b = np.zeros([symbols.size], dtype=np.complex128)
|
||||
|
||||
index = 0
|
||||
for j in range(Nfreq):
|
||||
for i in range(length):
|
||||
offset = (i+1)*Nsym
|
||||
row = y[offset-order:offset, j]
|
||||
A[index, :] = row
|
||||
b[index] = symbols[i, j]
|
||||
index += 1
|
||||
|
||||
A = np.array(A)
|
||||
b = np.array(b)
|
||||
h, residuals, rank, sv = lstsq(A, b)
|
||||
h = h[::-1].real
|
||||
|
||||
return h
|
||||
@@ -1,7 +1,12 @@
|
||||
from amodem import train, dsp, config, send
|
||||
from numpy.linalg import norm, lstsq
|
||||
from numpy.linalg import norm
|
||||
import numpy as np
|
||||
import itertools
|
||||
|
||||
from amodem import train, dsp, config, send
|
||||
from amodem import equalizer
|
||||
|
||||
|
||||
def assert_approx(x, y, e=1e-12):
|
||||
assert norm(x - y) < e * norm(x)
|
||||
|
||||
|
||||
def test_fir():
|
||||
@@ -10,8 +15,8 @@ def test_fir():
|
||||
rx = dsp.lfilter(x=tx, b=[1], a=a)
|
||||
h_ = dsp.estimate(x=rx, y=tx, order=len(a))
|
||||
tx_ = dsp.lfilter(x=rx, b=h_, a=[1])
|
||||
assert norm(h_ - a) < 1e-12
|
||||
assert (norm(tx - tx_) / norm(tx)) < 1e-12
|
||||
assert_approx(h_, a)
|
||||
assert_approx(tx, tx_)
|
||||
|
||||
|
||||
def test_iir():
|
||||
@@ -23,41 +28,14 @@ def test_iir():
|
||||
tx_ = dsp.lfilter(x=rx, b=h_, a=[1])
|
||||
|
||||
h_expected = np.array([alpha ** i for i in range(len(h_))])
|
||||
assert norm(h_ - h_expected) < 1e-12
|
||||
assert (norm(tx - tx_) / norm(tx)) < 1e-12
|
||||
|
||||
import random
|
||||
|
||||
_constellation = [1, 1j, -1, -1j]
|
||||
|
||||
|
||||
def train_symbols(length, seed=0, Nfreq=config.Nfreq):
|
||||
r = random.Random(seed)
|
||||
choose = lambda: [r.choice(_constellation) for j in range(Nfreq)]
|
||||
return np.array([choose() for i in range(length)])
|
||||
|
||||
|
||||
def modulator(length):
|
||||
symbols = train_symbols(length)
|
||||
carriers = send.sym.carrier
|
||||
gain = 1.0 / len(carriers)
|
||||
result = []
|
||||
for s in symbols:
|
||||
result.append(np.dot(s, carriers))
|
||||
result = np.concatenate(result).real * gain
|
||||
assert np.max(np.abs(result)) <= 1
|
||||
return result
|
||||
|
||||
|
||||
def demodulator(signal):
|
||||
signal = itertools.chain(signal, itertools.repeat(0))
|
||||
return dsp.Demux(signal, config.frequencies)
|
||||
assert_approx(h_, h_expected)
|
||||
assert_approx(tx, tx_)
|
||||
|
||||
|
||||
def test_training():
|
||||
L = 1000
|
||||
t1 = train_symbols(L)
|
||||
t2 = train_symbols(L)
|
||||
t1 = equalizer.train_symbols(L)
|
||||
t2 = equalizer.train_symbols(L)
|
||||
assert (t1 == t2).all()
|
||||
|
||||
|
||||
@@ -68,55 +46,38 @@ def test_commutation():
|
||||
y = dsp.lfilter(x=x, b=b, a=a)
|
||||
y1 = dsp.lfilter(x=dsp.lfilter(x=x, b=b, a=[1]), b=[1], a=a)
|
||||
y2 = dsp.lfilter(x=dsp.lfilter(x=x, b=[1], a=a), b=b, a=[1])
|
||||
assert norm(y - y1) < 1e-10
|
||||
assert norm(y - y2) < 1e-10
|
||||
assert_approx(y, y1)
|
||||
assert_approx(y, y2)
|
||||
|
||||
z = dsp.lfilter(x=y, b=a, a=[1])
|
||||
z_ = dsp.lfilter(x=x, b=b, a=[1])
|
||||
assert norm(z - z_) < 1e-10
|
||||
assert_approx(z, z_)
|
||||
|
||||
|
||||
def test_modem():
|
||||
L = 1000
|
||||
sent = train_symbols(L)
|
||||
sent = equalizer.train_symbols(L)
|
||||
gain = len(send.sym.carrier)
|
||||
x = modulator(L) * gain
|
||||
s = demodulator(x)
|
||||
received = np.array(list(itertools.islice(s, L)))
|
||||
err = sent - received
|
||||
assert norm(err) < 1e-10
|
||||
x = equalizer.modulator(sent) * gain
|
||||
received = equalizer.demodulator(x, L)
|
||||
assert_approx(sent, received)
|
||||
|
||||
|
||||
def test_equalizer():
|
||||
N = 32
|
||||
s = train_symbols(length=100, Nfreq=1).real.squeeze()
|
||||
x = [v for v in s for i in range(N)]
|
||||
matched = [1.0 / N] * N
|
||||
z = dsp.lfilter(x=x, b=matched, a=[1])
|
||||
assert norm(z[N-1::N] - s) < 1e-12
|
||||
def test_isi():
|
||||
length = 100
|
||||
gain = float(config.Nfreq)
|
||||
|
||||
den = np.array([1, 0.125])
|
||||
num = np.array([1])
|
||||
symbols = equalizer.train_symbols(length=length)
|
||||
x = equalizer.modulator(symbols)
|
||||
assert_approx(equalizer.demodulator(gain * x, size=length), symbols)
|
||||
|
||||
den = np.array([1, -0.6, 0.1])
|
||||
num = np.array([0.5])
|
||||
y = dsp.lfilter(x=x, b=num, a=den)
|
||||
y = dsp.lfilter(x=y, b=matched, a=[1])
|
||||
|
||||
A = []
|
||||
b = []
|
||||
h = equalizer.equalize(y, symbols, order=len(den))
|
||||
assert_approx(h, den / num)
|
||||
|
||||
r = 2
|
||||
for i in range(len(s)):
|
||||
offset = (i+1)*N
|
||||
row = y[offset-r:offset]
|
||||
A.append(row)
|
||||
b.append(s[i])
|
||||
A = np.array(A)
|
||||
b = np.array(b)
|
||||
h, residuals, rank, sv = lstsq(A, b)
|
||||
h = h[::-1]
|
||||
print(h)
|
||||
|
||||
y1 = dsp.lfilter(x=x, b=num, a=den)
|
||||
y2 = dsp.lfilter(x=y1, b=h, a=[1])
|
||||
y3 = dsp.lfilter(x=y2, b=matched, a=[1])
|
||||
z = y3[N-1::N]
|
||||
assert norm(z - s) < 1e-12
|
||||
y = dsp.lfilter(x=y, b=h, a=[1])
|
||||
z = equalizer.demodulator(gain * y, size=length)
|
||||
assert_approx(z, symbols)
|
||||
|
||||
Reference in New Issue
Block a user