Files
amodem/tests/test_equalizer.py

86 lines
2.1 KiB
Python

from numpy.linalg import norm
from numpy.random import RandomState
import numpy as np
from amodem import dsp
from amodem import config
from amodem import equalizer
def assert_approx(x, y, e=1e-12):
assert norm(x - y) < e * norm(x)
def test_training():
L = 1000
t1 = equalizer.train_symbols(L)
t2 = equalizer.train_symbols(L)
assert (t1 == t2).all()
def test_commutation():
x = np.random.RandomState(seed=0).normal(size=1000)
b = [1, 1j, -1, -1j]
a = [1, 0.1]
y = dsp.lfilter(x=x, b=b, a=a)
y1 = dsp.lfilter(x=dsp.lfilter(x=x, b=b, a=[1]), b=[1], a=a)
y2 = dsp.lfilter(x=dsp.lfilter(x=x, b=[1], a=a), b=b, a=[1])
assert_approx(y, y1)
assert_approx(y, y2)
z = dsp.lfilter(x=y, b=a, a=[1])
z_ = dsp.lfilter(x=x, b=b, a=[1])
assert_approx(z, z_)
def test_modem():
L = 1000
sent = equalizer.train_symbols(L)
gain = config.Nfreq
x = equalizer.modulator(sent) * gain
received = equalizer.demodulator(x, L)
assert_approx(sent, received)
def test_symbols():
length = 100
gain = float(config.Nfreq)
symbols = equalizer.train_symbols(length=length)
x = equalizer.modulator(symbols) * gain
assert_approx(equalizer.demodulator(x, size=length), symbols)
den = np.array([1, -0.6, 0.1])
num = np.array([0.5])
y = dsp.lfilter(x=x, b=num, a=den)
lookahead = 2
h = equalizer.equalize_symbols(
signal=y, symbols=symbols, order=len(den), lookahead=lookahead
)
assert norm(h[:lookahead]) < 1e-12
assert_approx(h[lookahead:], den / num)
y = dsp.lfilter(x=y, b=h[lookahead:], a=[1])
z = equalizer.demodulator(y, size=length)
assert_approx(z, symbols)
def test_signal():
length = 100
x = np.sign(RandomState(0).normal(size=length))
den = np.array([1, -0.6, 0.1])
num = np.array([0.5])
y = dsp.lfilter(x=x, b=num, a=den)
lookahead = 2
h = equalizer.equalize_signal(
signal=y, expected=x, order=len(den), lookahead=lookahead)
assert norm(h[:lookahead]) < 1e-12
h = h[lookahead:]
assert_approx(h, den / num)
x_ = dsp.lfilter(x=y, b=h, a=[1])
assert_approx(x_, x)