ggwave : more resampling fixes

This time the sound cracking should be fixed for real.

Also adding option to generate noise in the cpp tests
This commit is contained in:
Georgi Gerganov
2021-02-21 10:30:43 +02:00
parent 311442f01c
commit 553b414929
6 changed files with 179 additions and 56 deletions

File diff suppressed because one or more lines are too long

View File

@@ -294,9 +294,17 @@ public:
bool init(int dataSize, const char * dataBuffer, const TxProtocol & txProtocol, const int volume = kDefaultVolume);
// expected waveform size of the encoded Tx data in bytes
//
// When the output sampling rate is not equal to kBaseSampleRate the result of this method is overestimation of
// the actual number of bytes that would be produced
//
uint32_t encodeSize_bytes() const;
// expected waveform size of the encoded Tx data in samples
//
// When the output sampling rate is not equal to kBaseSampleRate the result of this method is overestimation of
// the actual number of samples that would be produced
//
uint32_t encodeSize_samples() const;
// encode Tx data into an audio waveform

View File

@@ -473,8 +473,9 @@ uint32_t GGWave::encodeSize_samples() const {
float factor = 1.0f;
int samplesPerFrameOut = m_samplesPerFrame;
if (m_sampleRateOut != kBaseSampleRate) {
factor = kBaseSampleRate/m_sampleRateOut;
samplesPerFrameOut = m_impl->resampler.resample(factor, m_samplesPerFrame, m_outputBlock.data(), nullptr);
factor = float(kBaseSampleRate)/m_sampleRateOut;
// note : +1 extra sample in order to overestimate the buffer size
samplesPerFrameOut = m_impl->resampler.resample(factor, m_samplesPerFrame, m_outputBlock.data(), nullptr) + 1;
}
int nECCBytesPerTx = getECCBytesForLength(m_txDataLength);
int sendDataLength = m_txDataLength + m_encodedDataOffset;
@@ -489,6 +490,8 @@ uint32_t GGWave::encodeSize_samples() const {
bool GGWave::encode(const CBWaveformOut & cbWaveformOut) {
int frameId = 0;
m_impl->resampler.reset();
std::vector<double> phaseOffsets(kMaxDataBits);
for (int k = 0; k < (int) phaseOffsets.size(); ++k) {
@@ -540,10 +543,7 @@ bool GGWave::encode(const CBWaveformOut & cbWaveformOut) {
rsData.Encode(m_txData.data() + 1, m_txDataEncoded.data() + m_encodedDataOffset);
float factor = float(kBaseSampleRate)/m_sampleRateOut;
int samplesPerFrameOut = m_samplesPerFrame;
if (m_sampleRateOut != kBaseSampleRate) {
samplesPerFrameOut = m_impl->resampler.resample(factor, m_samplesPerFrame, m_outputBlock.data(), m_outputBlockResampled.data());
}
uint32_t offset = 0;
while (m_hasNewTxData) {
std::fill(m_outputBlock.begin(), m_outputBlock.end(), 0.0f);
@@ -610,14 +610,13 @@ bool GGWave::encode(const CBWaveformOut & cbWaveformOut) {
m_outputBlock[i] *= scale;
}
if (samplesPerFrameOut != m_samplesPerFrame) {
m_impl->resampler.resample(factor, m_samplesPerFrame, m_outputBlock.data(), m_outputBlockResampled.data());
int samplesPerFrameOut = m_samplesPerFrame;
if (m_sampleRateOut != kBaseSampleRate) {
samplesPerFrameOut = m_impl->resampler.resample(factor, m_samplesPerFrame, m_outputBlock.data(), m_outputBlockResampled.data());
} else {
m_outputBlockResampled = m_outputBlock;
}
uint32_t offset = frameId*samplesPerFrameOut;
// default output is in 16-bit signed int so we always compute it
for (int i = 0; i < samplesPerFrameOut; ++i) {
m_outputBlockI16[offset + i] = 32768*m_outputBlockResampled[i];
@@ -665,25 +664,26 @@ bool GGWave::encode(const CBWaveformOut & cbWaveformOut) {
}
++frameId;
offset += samplesPerFrameOut;
}
switch (m_sampleFormatOut) {
case GGWAVE_SAMPLE_FORMAT_UNDEFINED: break;
case GGWAVE_SAMPLE_FORMAT_I16:
{
cbWaveformOut(m_outputBlockI16.data(), frameId*samplesPerFrameOut*m_sampleSizeBytesOut);
cbWaveformOut(m_outputBlockI16.data(), offset*m_sampleSizeBytesOut);
} break;
case GGWAVE_SAMPLE_FORMAT_U8:
case GGWAVE_SAMPLE_FORMAT_I8:
case GGWAVE_SAMPLE_FORMAT_U16:
case GGWAVE_SAMPLE_FORMAT_F32:
{
cbWaveformOut(m_outputBlockTmp.data(), frameId*samplesPerFrameOut*m_sampleSizeBytesOut);
cbWaveformOut(m_outputBlockTmp.data(), offset*m_sampleSizeBytesOut);
} break;
}
m_txAmplitudeDataI16.resize(frameId*samplesPerFrameOut);
for (int i = 0; i < frameId*samplesPerFrameOut; ++i) {
m_txAmplitudeDataI16.resize(offset);
for (uint32_t i = 0; i < offset; ++i) {
m_txAmplitudeDataI16[i] = m_outputBlockI16[i];
}
@@ -697,7 +697,8 @@ void GGWave::decode(const CBWaveformInp & cbWaveformInp) {
uint32_t nBytesNeeded = m_samplesNeeded*m_sampleSizeBytesInp;
if (m_sampleRateInp != kBaseSampleRate) {
nBytesNeeded = m_impl->resampler.resample(1.0/factor, m_samplesNeeded, m_sampleAmplitudeResampled.data(), nullptr)*m_sampleSizeBytesInp;
// note : predict 4 extra samples just to make sure we have enough data
nBytesNeeded = (m_impl->resampler.resample(1.0f/factor, m_samplesNeeded, m_sampleAmplitudeResampled.data(), nullptr) + 4)*m_sampleSizeBytesInp;
}
uint32_t nBytesRecorded = 0;
@@ -770,13 +771,23 @@ void GGWave::decode(const CBWaveformInp & cbWaveformInp) {
case GGWAVE_SAMPLE_FORMAT_F32: break;
}
if (nBytesRecorded == 0) {
if (nSamplesRecorded == 0) {
break;
}
uint32_t offset = m_samplesPerFrame - m_samplesNeeded;
if (m_sampleRateInp != kBaseSampleRate) {
if (nSamplesRecorded <= 2*Resampler::kWidth) {
m_samplesNeeded = m_samplesPerFrame;
break;
}
// reset resampler state every minute
if (!m_receivingData && m_impl->resampler.nSamplesTotal() > 60.0f*factor*kBaseSampleRate) {
m_impl->resampler.reset();
}
int nSamplesResampled = offset + m_impl->resampler.resample(factor, nSamplesRecorded, m_sampleAmplitudeResampled.data(), m_sampleAmplitude.data() + offset);
nSamplesRecorded = nSamplesResampled;
} else {

View File

@@ -1,5 +1,6 @@
#include "resampler.h"
#include <cassert>
#include <cmath>
#include <cstdio>
@@ -9,8 +10,20 @@ double linear_interp(double first_number, double second_number, double fraction)
}
}
Resampler::Resampler() {
Resampler::Resampler() :
m_sincTable(kWidth*kSamplesPerZeroCrossing),
m_delayBuffer(3*kWidth),
m_edgeSamples(kWidth),
m_samplesInp(2048) {
make_sinc();
reset();
}
void Resampler::reset() {
m_state = {};
std::fill(m_edgeSamples.begin(), m_edgeSamples.end(), 0.0f);
std::fill(m_delayBuffer.begin(), m_delayBuffer.end(), 0.0f);
std::fill(m_samplesInp.begin(), m_samplesInp.end(), 0.0f);
}
int Resampler::resample(
@@ -18,59 +31,96 @@ int Resampler::resample(
int nSamples,
const float * samplesInp,
float * samplesOut) {
int idxInp = 0;
int idxInp = -1;
int idxOut = 0;
int notDone = 1;
double time_now = 0.0;
long num_samples = nSamples;
long int_time = 0;
long last_time = 0;
float data_in = samplesInp[idxInp];
float data_out;
float data_in = 0.0f;
float data_out = 0.0f;
double one_over_factor = 1.0;
auto stateSave = m_state;
m_state.nSamplesTotal += nSamples;
if (samplesOut) {
assert(nSamples > kWidth);
if ((int) m_samplesInp.size() < nSamples + kWidth) {
m_samplesInp.resize(nSamples + kWidth);
}
for (int i = 0; i < kWidth; ++i) {
m_samplesInp[i] = m_edgeSamples[i];
m_edgeSamples[i] = samplesInp[nSamples - kWidth + i];
}
for (int i = 0; i < nSamples; ++i) {
m_samplesInp[i + kWidth] = samplesInp[i];
}
samplesInp = m_samplesInp.data();
}
while (notDone) {
while (m_state.timeLast < m_state.timeInt) {
if (++idxInp >= nSamples) {
notDone = 0;
break;
} else {
data_in = samplesInp[idxInp];
}
//printf("xxxx idxInp = %d\n", idxInp);
if (samplesOut) new_data(data_in);
m_state.timeLast += 1;
}
if (notDone == false) break;
double temp1 = 0.0;
long left_limit = time_now - kWidth + 1; /* leftmost neighboring sample used for interp.*/
long right_limit = time_now + kWidth; /* rightmost leftmost neighboring sample used for interp.*/
if (left_limit<0) left_limit = 0;
if (right_limit>num_samples) right_limit = num_samples;
if (factor<1.0) {
for (int j=left_limit;j<right_limit;j++) {
temp1 += gimme_data(j-int_time)*sinc(time_now - (double) j);
int left_limit = m_state.timeNow - kWidth + 1; /* leftmost neighboring sample used for interp.*/
int right_limit = m_state.timeNow + kWidth; /* rightmost leftmost neighboring sample used for interp.*/
if (left_limit < 0) left_limit = 0;
if (right_limit > m_state.nSamplesTotal + kWidth) right_limit = m_state.nSamplesTotal + kWidth;
if (factor < 1.0) {
for (int j = left_limit; j < right_limit; j++) {
temp1 += gimme_data(j - m_state.timeInt)*sinc(m_state.timeNow - (double) j);
}
data_out = temp1;
}
else {
one_over_factor = 1.0 / factor;
for (int j=left_limit;j<right_limit;j++) {
temp1 += gimme_data(j-int_time)*one_over_factor*sinc(one_over_factor * (time_now - (double) j));
for (int j = left_limit; j < right_limit; j++) {
temp1 += gimme_data(j - m_state.timeInt)*one_over_factor*sinc(one_over_factor*(m_state.timeNow - (double) j));
}
data_out = temp1;
}
if (samplesOut) {
//printf("inp = %d, l = %d, r = %d, n = %d, a = %d, b = %d\n", idxInp, left_limit, right_limit, m_state.nSamplesTotal, left_limit - m_state.timeInt, right_limit - m_state.timeInt - 1);
samplesOut[idxOut] = data_out;
}
++idxOut;
time_now += factor;
last_time = int_time;
int_time = time_now;
while (last_time<int_time) {
if (++idxInp == nSamples) {
m_state.timeNow += factor;
m_state.timeLast = m_state.timeInt;
m_state.timeInt = m_state.timeNow;
while (m_state.timeLast < m_state.timeInt) {
if (++idxInp >= nSamples) {
notDone = 0;
break;
} else {
data_in = samplesInp[idxInp];
}
new_data(data_in);
last_time += 1;
if (samplesOut) new_data(data_in);
m_state.timeLast += 1;
}
//printf("last idxInp = %d, nSamples = %d\n", idxInp, nSamples);
}
if (samplesOut == nullptr) {
m_state = stateSave;
}
return idxOut;
}
float Resampler::gimme_data(long j) const {
float Resampler::gimme_data(int j) const {
return m_delayBuffer[(int) j + kWidth];
}
@@ -85,7 +135,7 @@ void Resampler::make_sinc() {
double temp, win_freq, win;
win_freq = M_PI/kWidth/kSamplesPerZeroCrossing;
m_sincTable[0] = 1.0;
for (int i = 1; i < kWidth*kSamplesPerZeroCrossing;i++) {
for (int i = 1; i < kWidth*kSamplesPerZeroCrossing; i++) {
temp = (double) i*M_PI/kSamplesPerZeroCrossing;
m_sincTable[i] = sin(temp)/temp;
win = 0.5 + 0.5*cos(win_freq*i);
@@ -99,7 +149,7 @@ double Resampler::sinc(double x) const {
if (fabs(x) >= kWidth - 1) {
return 0.0;
} else {
temp = fabs(x) * (double) kSamplesPerZeroCrossing;
temp = fabs(x)*(double) kSamplesPerZeroCrossing;
low = temp; /* these are interpolation steps */
delta = temp - low; /* and can be ommited if desired */
return linear_interp(m_sincTable[low], m_sincTable[low + 1], delta);

View File

@@ -1,9 +1,21 @@
#pragma once
#include <vector>
#include <cstdint>
class Resampler {
public:
// this controls the number of neighboring samples
// which are used to interpolate the new samples. The
// processing time is linearly related to this width
static const int kWidth = 64;
Resampler();
void reset();
int nSamplesTotal() const { return m_state.nSamplesTotal; }
int resample(
float factor,
int nSamples,
@@ -11,23 +23,27 @@ public:
float * samplesOut);
private:
float gimme_data(long j) const;
float gimme_data(int j) const;
void new_data(float data);
void make_sinc();
double sinc(double x) const;
/* this controls the number of neighboring samples
which are used to interpolate the new samples. The
processing time is linearly related to this width */
static const int kWidth = 64;
static const int kDelaySize = 140;
/* this defines how finely the sinc function
is sampled for storage in the table */
// this defines how finely the sinc function is sampled for storage in the table
static const int kSamplesPerZeroCrossing = 32;
float m_sincTable[kWidth*kSamplesPerZeroCrossing] = { 0.0 };
std::vector<float> m_sincTable;
std::vector<float> m_delayBuffer;
std::vector<float> m_edgeSamples;
std::vector<float> m_samplesInp;
float m_delayBuffer[3*kWidth] = { 0 };
struct State {
int nSamplesTotal = 0;
int timeInt = 0;
int timeLast = 0;
double timeNow = 0.0;
};
State m_state;
};

View File

@@ -8,6 +8,8 @@
#include <vector>
#include <set>
float frand() { return float(rand()%RAND_MAX)/RAND_MAX; }
#define CHECK(cond) \
if (!(cond)) { \
fprintf(stderr, "[%s:%d] Check failed: %s\n", __FILE__, __LINE__, #cond); \
@@ -145,7 +147,42 @@ int main(int argc, char ** argv) {
};
} break;
};
};
auto addNoiseHelper = [&](float level, GGWave::SampleFormat format) {
switch (format) {
case GGWAVE_SAMPLE_FORMAT_UNDEFINED: CHECK(false); break;
case GGWAVE_SAMPLE_FORMAT_U8:
{
for (auto & s : bufferU8) {
s = std::max(0.0f, std::min(255.0f, (float) s + (frand() - 0.5f)*(level*256)));
}
} break;
case GGWAVE_SAMPLE_FORMAT_I8:
{
for (auto & s : bufferI8) {
s = std::max(-128.0f, std::min(127.0f, (float) s + (frand() - 0.5f)*(level*256)));
}
} break;
case GGWAVE_SAMPLE_FORMAT_U16:
{
for (auto & s : bufferU16) {
s = std::max(0.0f, std::min(65535.0f, (float) s + (frand() - 0.5f)*(level*65536)));
}
} break;
case GGWAVE_SAMPLE_FORMAT_I16:
{
for (auto & s : bufferI16) {
s = std::max(-32768.0f, std::min(32767.0f, (float) s + (frand() - 0.5f)*(level*65536)));
}
} break;
case GGWAVE_SAMPLE_FORMAT_F32:
{
for (auto & s : bufferF32) {
s = std::max(-1.0f, std::min(1.0f, (float) s + (frand() - 0.5f)*(level)));
}
} break;
};
};
uint32_t nSamples = 0;
@@ -194,7 +231,7 @@ int main(int argc, char ** argv) {
printf("Testing: sample rate = %d\n", srInp);
auto parameters = GGWave::getDefaultParameters();
parameters.soundMarkerThreshold = 1.1f;
parameters.soundMarkerThreshold = 3.0f;
std::string payload = "hello123";
@@ -207,7 +244,8 @@ int main(int argc, char ** argv) {
auto expectedSize = instanceOut.encodeSize_samples();
instanceOut.encode(kCBWaveformOut.at(parameters.sampleFormatOut));
printf("Expected = %d, actual = %d\n", expectedSize, nSamples);
CHECK(expectedSize == nSamples);
CHECK(expectedSize >= nSamples);
addNoiseHelper(0.01, parameters.sampleFormatOut); // add some artificial noise
convertHelper(parameters.sampleFormatOut, parameters.sampleFormatInp);
}