remove-stl : no longer using std::vector

However, the processing became ~4 times slower !?
This commit is contained in:
Georgi Gerganov
2022-06-07 22:27:45 +03:00
parent 4794508e04
commit e6d458e482
4 changed files with 251 additions and 186 deletions

View File

@@ -181,7 +181,7 @@ struct State {
if (this->flags.newTxAmplitude) {
dst.update = true;
dst.flags.newTxAmplitude = true;
dst.txAmplitude = std::move(this->txAmplitude);
dst.txAmplitude.assign(this->txAmplitude);
}
if (this->flags.newStats) {
@@ -202,7 +202,7 @@ struct State {
Message message;
GGWave::Spectrum rxSpectrum;
std::vector<float> rxSpectrum;
GGWave::Amplitude rxAmplitude;
GGWave::AmplitudeI16 txAmplitude;
@@ -703,7 +703,7 @@ void updateCore() {
static const int NMax = GGWave::kMaxSamplesPerFrame;
static float tmp[2*NMax];
int N = ggWave->samplesPerFrame();
const int N = ggWave->samplesPerFrame();
ggWave->computeFFTR(g_buffer.stateCore.rxAmplitude.data(), tmp, N);
g_buffer.stateCore.rxSpectrum.resize(N);
@@ -884,8 +884,8 @@ void renderMain() {
static double tLengthTx = 0.0f;
static GGWaveStats statsCurrent;
static GGWave::Spectrum spectrumCurrent;
static GGWave::AmplitudeI16 txAmplitudeCurrent;
static std::vector<float> spectrumCurrent;
static std::vector<int16_t> txAmplitudeCurrent;
static std::vector<Message> messageHistory;
static std::string inputLast = "";
@@ -914,7 +914,8 @@ void renderMain() {
hasAudioCaptureData = !spectrumCurrent.empty();
}
if (stateCurrent.flags.newTxAmplitude) {
txAmplitudeCurrent = std::move(stateCurrent.txAmplitude);
txAmplitudeCurrent.resize(stateCurrent.txAmplitude.size());
std::copy(stateCurrent.txAmplitude.begin(), stateCurrent.txAmplitude.end(), txAmplitudeCurrent.begin());
tStartTx = ImGui::GetTime() + (16.0f*1024.0f)/statsCurrent.sampleRateOut;
tLengthTx = txAmplitudeCurrent.size()/statsCurrent.sampleRateOut;

View File

@@ -330,8 +330,6 @@ extern "C" {
// C++ interface
//
#include <assert.h>
template <typename T>
struct ggvector {
private:
@@ -341,42 +339,28 @@ private:
public:
using value_type = T;
ggvector() : m_data(nullptr), m_size(0) {}
ggvector(T * data, int size) : m_data(data), m_size(size) {}
ggvector();
ggvector(T * data, int size);
ggvector(const ggvector<T> & other) = default;
T & operator[](int i) {
return m_data[i];
}
// delete operator=
ggvector & operator=(const ggvector &) = delete;
ggvector & operator=(ggvector &&) = delete;
const T & operator[](int i) const {
return m_data[i];
}
T & operator[](int i);
const T & operator[](int i) const;
void copy(const ggvector & other) {
if (this != &other) {
if (m_size != other.m_size) {
// should never happen
assert(false);
}
memcpy(m_data, other.m_data, m_size * sizeof(T));
}
}
void assign(const ggvector & other);
void copy(const ggvector & other);
int size() const {
return m_size;
}
int size() const;
T * data() const;
T * data() const {
return m_data;
}
T * begin() const;
T * end() const;
T * begin() const {
return m_data;
}
T * end() const {
return m_data + m_size;
}
void zero();
void zero(int n);
};
template <typename T>
@@ -389,24 +373,21 @@ private:
public:
using value_type = T;
ggmatrix(T * data, int size0, int size1) : m_data(data), m_size0(size0), m_size1(size1) {}
ggmatrix();
ggmatrix(T * data, int size0, int size1);
ggvector<T> operator[](int i) {
return ggvector<T>(m_data + i * m_size1, m_size1);
}
ggvector<T> operator[](int i);
T & operator()(int i, int j) {
return m_data[i * m_size1 + j];
}
T & operator()(int i, int j);
int size0() const {
return m_size0;
}
int size() const;
void zero();
};
#include <stdint.h>
#include <stdio.h>
#include <vector>
#include <initializer_list>
class GGWave {
public:
@@ -548,11 +529,12 @@ public:
//
using Tones = ggvector<Tone>;
using Amplitude = std::vector<float>;
using AmplitudeI16 = std::vector<int16_t>;
using Spectrum = std::vector<float>;
using RecordedData = std::vector<float>;
using TxRxData = std::vector<uint8_t>;
using Amplitude = ggvector<float>;
using AmplitudeArr = ggmatrix<float>;
using AmplitudeI16 = ggvector<int16_t>;
using Spectrum = ggvector<float>;
using RecordedData = ggvector<float>;
using TxRxData = ggvector<uint8_t>;
// constructor
//
@@ -752,6 +734,8 @@ public:
Resampler();
bool alloc(void * p, int & n);
void reset();
int nSamplesTotal() const { return m_state.nSamplesTotal; }
@@ -773,10 +757,10 @@ public:
// this defines how finely the sinc function is sampled for storage in the table
static const int kSamplesPerZeroCrossing = 32;
std::vector<float> m_sincTable;
std::vector<float> m_delayBuffer;
std::vector<float> m_edgeSamples;
std::vector<float> m_samplesInp;
ggvector<float> m_sincTable;
ggvector<float> m_delayBuffer;
ggvector<float> m_edgeSamples;
ggvector<float> m_samplesInp;
struct State {
int nSamplesTotal = 0;
@@ -851,9 +835,9 @@ private:
int framesToRecord = 0;
int samplesNeeded = 0;
std::vector<float> fftOut; // complex
std::vector<int> fftWorkI;
std::vector<float> fftWorkF;
ggvector<float> fftOut; // complex
ggvector<int> fftWorkI;
ggvector<float> fftWorkF;
bool hasNewRxData = false;
bool hasNewSpectrum = false;
@@ -874,16 +858,16 @@ private:
// variable-length decoding
int historyId = 0;
Amplitude amplitudeAverage;
std::vector<Amplitude> amplitudeHistory;
RecordedData amplitudeRecorded;
Amplitude amplitudeAverage;
AmplitudeArr amplitudeHistory;
RecordedData amplitudeRecorded;
// fixed-length decoding
int historyIdFixed = 0;
std::vector<std::vector<uint16_t>> spectrumHistoryFixed;
std::vector<uint8_t> detectedBins;
std::vector<uint8_t> detectedTones;
ggmatrix<uint16_t> spectrumHistoryFixed;
ggvector<uint8_t> detectedBins;
ggvector<uint8_t> detectedTones;
} m_rx;
struct Tx {
@@ -894,11 +878,11 @@ private:
int dataLength = 0;
int lastAmplitudeSize = 0;
std::vector<bool> dataBits;
std::vector<double> phaseOffsets;
ggvector<bool> dataBits;
ggvector<double> phaseOffsets;
std::vector<Amplitude> bit1Amplitude;
std::vector<Amplitude> bit0Amplitude;
AmplitudeArr bit1Amplitude;
AmplitudeArr bit0Amplitude;
TxRxData data;
TxProtocol protocol;
@@ -913,10 +897,10 @@ private:
Tones tones;
} m_tx;
mutable Resampler m_resampler;
void * m_heap;
int m_heapSize;
Resampler * m_resampler;
};
#endif

View File

@@ -25,6 +25,9 @@
g_fptr && fprintf(g_fptr, __VA_ARGS__)
#endif
#define GG_MIN(A, B) (((A) < (B)) ? (A) : (B))
#define GG_MAX(A, B) (((A) >= (B)) ? (A) : (B))
//
// C interface
//
@@ -124,7 +127,7 @@ int ggwave_encode(
{
auto pSrc = (const char *) ggWave->txData();
auto pDst = ( char *) waveformBuffer;
std::copy(pSrc, pSrc + nBytes, pDst);
memcpy(pDst, pSrc, nBytes);
}
return nBytes;
@@ -229,7 +232,7 @@ void FFT(float * f, int N, int * ip, float * w) {
}
void FFT(const float * src, float * dst, int N, int * ip, float * w) {
std::copy(src, src + N, dst);
memcpy(dst, src, N * sizeof(float));
FFT(dst, N, ip, w);
}
@@ -258,7 +261,7 @@ inline void addAmplitudeSmooth(
}
int getECCBytesForLength(int len) {
return len < 4 ? 2 : std::max(4, 2*(len/5));
return len < 4 ? 2 : GG_MAX(4, 2*(len/5));
}
int bytesForSampleFormat(GGWave::SampleFormat sampleFormat) {
@@ -278,6 +281,107 @@ int bytesForSampleFormat(GGWave::SampleFormat sampleFormat) {
}
//
// ggvector
//
template<typename T>
ggvector<T>::ggvector() : m_data(nullptr), m_size(0) {}
template<typename T>
ggvector<T>::ggvector(T * data, int size) : m_data(data), m_size(size) {}
template<typename T>
T & ggvector<T>::operator[](int i) {
return m_data[i];
}
template<typename T>
const T & ggvector<T>::operator[](int i) const {
return m_data[i];
}
template<typename T>
void ggvector<T>::assign(const ggvector & other) {
m_data = other.m_data;
m_size = other.m_size;
}
template<typename T>
void ggvector<T>::copy(const ggvector & other) {
if (this == &other) {
assert(false);
}
memcpy(m_data, other.m_data, GG_MIN(m_size, other.m_size)*sizeof(T));
}
template<typename T>
int ggvector<T>::size() const {
return m_size;
}
template<typename T>
T * ggvector<T>::data() const {
return m_data;
}
template<typename T>
T * ggvector<T>::begin() const {
return m_data;
}
template<typename T>
T * ggvector<T>::end() const {
return m_data + m_size;
}
template<typename T>
void ggvector<T>::zero() {
memset(m_data, 0, m_size*sizeof(T));
}
template<typename T>
void ggvector<T>::zero(int n) {
memset(m_data, 0, n*sizeof(T));
}
template struct ggvector<uint8_t>;
template struct ggvector<int8_t>;
template struct ggvector<float>;
template struct ggvector<int16_t>;
//
// ggmatrix
//
template <typename T>
ggmatrix<T>::ggmatrix() : m_data(nullptr), m_size0(0), m_size1(0) {}
template <typename T>
ggmatrix<T>::ggmatrix(T * data, int size0, int size1) : m_data(data), m_size0(size0), m_size1(size1) {}
template <typename T>
ggvector<T> ggmatrix<T>::operator[](int i) {
return ggvector<T>(m_data + i*m_size1, m_size1);
}
template <typename T>
T & ggmatrix<T>::operator()(int i, int j) {
return m_data[i*m_size1 + j];
}
template <typename T>
int ggmatrix<T>::size() const {
return m_size0;
}
template <typename T>
void ggmatrix<T>::zero() {
memset(m_data, 0, m_size0*m_size1*sizeof(T));
}
//
// Protocols
//
@@ -332,51 +436,30 @@ GGWave::RxProtocols & GGWave::Protocols::rx() {
return protocols;
}
template <typename T>
void ggalloc(std::vector<T> & v, int n, void * buf, int & bufSize) {
if (buf == nullptr) {
bufSize += n*sizeof(T);
return;
}
v.resize(n);
bufSize += n*sizeof(T);
}
template <typename T>
void ggalloc(std::vector<std::vector<T>> & v, int n, int m, void * buf, int & bufSize) {
if (buf == nullptr) {
bufSize += n*m*sizeof(T);
return;
}
v.resize(n);
for (int i = 0; i < n; i++) {
v[i].resize(m);
}
bufSize += n*m*sizeof(T);
}
template <typename T>
void ggalloc(ggvector<T> & v, int n, void * buf, int & bufSize) {
if (buf == nullptr) {
bufSize += n*sizeof(T);
bufSize = ((bufSize + 7)/8)*8;
return;
}
v = ggvector<T>((T *)((char *) buf + bufSize), n);
v.assign(ggvector<T>((T *)((char *) buf + bufSize), n));
bufSize += n*sizeof(T);
bufSize = ((bufSize + 7)/8)*8;
}
template <typename T>
void ggalloc(ggmatrix<T> & v, int n, int m, void * buf, int & bufSize) {
if (buf == nullptr) {
bufSize += n*m*sizeof(T);
bufSize = ((bufSize + 7)/8)*8;
return;
}
v = ggmatrix<T>((T *)((char *) buf + bufSize), n, m);
bufSize += n*m*sizeof(T);
bufSize = ((bufSize + 7)/8)*8;
}
//
@@ -407,8 +490,7 @@ GGWave::GGWave(const Parameters & parameters) :
m_isTxEnabled (parameters.operatingMode & GGWAVE_OPERATING_MODE_TX),
m_needResampling (m_sampleRateInp != m_sampleRate || m_sampleRateOut != m_sampleRate),
m_txOnlyTones (parameters.operatingMode & GGWAVE_OPERATING_MODE_TX_ONLY_TONES),
m_isDSSEnabled (parameters.operatingMode & GGWAVE_OPERATING_MODE_USE_DSS),
m_resampler(nullptr) {
m_isDSSEnabled (parameters.operatingMode & GGWAVE_OPERATING_MODE_USE_DSS) {
if (m_sampleSizeInp == 0) {
ggprintf("Invalid or unsupported capture sample format: %d\n", (int) parameters.sampleFormatInp);
@@ -439,9 +521,8 @@ GGWave::GGWave(const Parameters & parameters) :
}
GGWave::~GGWave() {
if (m_resampler) {
delete m_resampler;
m_resampler = nullptr;
if (m_heap) {
free(m_heap);
}
}
@@ -456,13 +537,20 @@ bool GGWave::prepare(const Parameters & parameters) {
return false;
}
const auto heapSize0 = m_heapSize;
m_heap = malloc(m_heapSize);
m_heapSize = 0;
if (this->alloc(m_heap, m_heapSize) == false) {
ggprintf("Error: failed to allocate the required memory: %d\n", m_heapSize);
return false;
}
if (heapSize0 != m_heapSize) {
ggprintf("Error: failed to allocate memory - heapSize0: %d, heapSize: %d\n", heapSize0, m_heapSize);
return false;
}
if (m_isRxEnabled) {
m_rx.samplesNeeded = m_samplesPerFrame;
@@ -477,17 +565,10 @@ bool GGWave::prepare(const Parameters & parameters) {
m_tx.protocols = Protocols::tx();
}
// TODO: avoid new
if (m_needResampling) {
m_resampler = new Resampler();
}
return init("", {}, 0);
}
bool GGWave::alloc(void * p, int & n) {
n = 0;
// common
::ggalloc(m_dataEncoded, kMaxDataSize, p, n);
@@ -559,7 +640,7 @@ bool GGWave::alloc(void * p, int & n) {
::ggalloc(m_workRSData, RS::ReedSolomon::getWorkSize_bytes(maxLength, getECCBytesForLength(maxLength)), p, n);
}
return true;
return m_resampler.alloc(p, n);
}
void GGWave::setLogFile(FILE * fptr) {
@@ -607,8 +688,8 @@ bool GGWave::init(int dataSize, const char * dataBuffer, TxProtocolId protocolId
}
m_tx.hasData = false;
std::fill(m_tx.data.begin(), m_tx.data.end(), 0);
std::fill(m_dataEncoded.begin(), m_dataEncoded.end(), 0);
m_tx.data.zero();
m_dataEncoded.zero();
if (dataSize > 0) {
if (protocolId < 0 || protocolId >= m_tx.protocols.size()) {
@@ -658,17 +739,13 @@ bool GGWave::init(int dataSize, const char * dataBuffer, TxProtocolId protocolId
m_rx.framesToRecord = 0;
m_rx.framesLeftToRecord = 0;
std::fill(m_rx.spectrum.begin(), m_rx.spectrum.end(), 0);
std::fill(m_rx.amplitude.begin(), m_rx.amplitude.end(), 0);
for (auto & s : m_rx.amplitudeHistory) {
std::fill(s.begin(), s.end(), 0);
}
m_rx.spectrum.zero();
m_rx.amplitude.zero();
m_rx.amplitudeHistory.zero();
std::fill(m_rx.data.begin(), m_rx.data.end(), 0);
m_rx.data.zero();
for (auto & s : m_rx.spectrumHistoryFixed) {
std::fill(s.begin(), s.end(), 0);
}
m_rx.spectrumHistoryFixed.zero();
}
return true;
@@ -685,10 +762,10 @@ uint32_t GGWave::encodeSize_samples() const {
float factor = 1.0f;
int samplesPerFrameOut = m_samplesPerFrame;
if (m_sampleRateOut != m_sampleRate) {
if (m_needResampling) {
factor = m_sampleRate/m_sampleRateOut;
// note : +1 extra sample in order to overestimate the buffer size
samplesPerFrameOut = m_resampler->resample(factor, m_samplesPerFrame, m_tx.output.data(), nullptr) + 1;
samplesPerFrameOut = m_resampler.resample(factor, m_samplesPerFrame, m_tx.output.data(), nullptr) + 1;
}
const int nECCBytesPerTx = getECCBytesForLength(m_tx.dataLength);
const int sendDataLength = m_tx.dataLength + m_encodedDataOffset;
@@ -706,8 +783,8 @@ uint32_t GGWave::encode() {
return 0;
}
if (m_resampler) {
m_resampler->reset();
if (m_needResampling) {
m_resampler.reset();
}
const int nECCBytesPerTx = getECCBytesForLength(m_tx.dataLength);
@@ -740,7 +817,7 @@ uint32_t GGWave::encode() {
dataOffset /= m_tx.protocol.framesPerTx;
dataOffset *= m_tx.protocol.bytesPerTx;
std::fill(m_tx.dataBits.begin(), m_tx.dataBits.end(), 0);
m_tx.dataBits.zero();
for (int j = 0; j < m_tx.protocol.bytesPerTx; ++j) {
if (m_tx.protocol.extra == 1) {
@@ -826,7 +903,7 @@ uint32_t GGWave::encode() {
const float factor = m_sampleRate/m_sampleRateOut;
while (m_tx.hasData) {
std::fill(m_tx.output.begin(), m_tx.output.end(), 0.0f);
m_tx.output.zero();
uint16_t nFreq = 0;
if (frameId < m_nMarkerFrames) {
@@ -845,7 +922,7 @@ uint32_t GGWave::encode() {
dataOffset /= m_tx.protocol.framesPerTx;
dataOffset *= m_tx.protocol.bytesPerTx;
std::fill(m_tx.dataBits.begin(), m_tx.dataBits.end(), 0);
m_tx.dataBits.zero();
for (int j = 0; j < m_tx.protocol.bytesPerTx; ++j) {
if (m_tx.protocol.extra == 1) {
@@ -901,10 +978,10 @@ uint32_t GGWave::encode() {
}
int samplesPerFrameOut = m_samplesPerFrame;
if (m_sampleRateOut != m_sampleRate) {
samplesPerFrameOut = m_resampler->resample(factor, m_samplesPerFrame, m_tx.output.data(), m_tx.outputResampled.data());
if (m_needResampling) {
samplesPerFrameOut = m_resampler.resample(factor, m_samplesPerFrame, m_tx.output.data(), m_tx.outputResampled.data());
} else {
m_tx.outputResampled = m_tx.output;
m_tx.outputResampled.copy(m_tx.output);
}
// default output is in 16-bit signed int so we always compute it
@@ -1006,12 +1083,12 @@ bool GGWave::decode(const void * data, uint32_t nBytes) {
// read capture data
uint32_t nBytesNeeded = m_rx.samplesNeeded*m_sampleSizeInp;
if (m_sampleRateInp != m_sampleRate) {
if (m_needResampling) {
// note : predict 4 extra samples just to make sure we have enough data
nBytesNeeded = (m_resampler->resample(1.0f/factor, m_rx.samplesNeeded, m_rx.amplitudeResampled.data(), nullptr) + 4)*m_sampleSizeInp;
nBytesNeeded = (m_resampler.resample(1.0f/factor, m_rx.samplesNeeded, m_rx.amplitudeResampled.data(), nullptr) + 4)*m_sampleSizeInp;
}
const uint32_t nBytesRecorded = std::min(nBytes, nBytesNeeded);
const uint32_t nBytesRecorded = GG_MIN(nBytes, nBytesNeeded);
if (nBytesRecorded == 0) {
break;
@@ -1024,11 +1101,11 @@ bool GGWave::decode(const void * data, uint32_t nBytes) {
case GGWAVE_SAMPLE_FORMAT_U16:
case GGWAVE_SAMPLE_FORMAT_I16:
{
std::copy(dataBuffer, dataBuffer + nBytesRecorded, m_rx.amplitudeTmp.data());
memcpy(m_rx.amplitudeTmp.data(), dataBuffer, nBytesRecorded);
} break;
case GGWAVE_SAMPLE_FORMAT_F32:
{
std::copy(dataBuffer, dataBuffer + nBytesRecorded, (uint8_t *) m_rx.amplitudeResampled.data());
memcpy(m_rx.amplitudeResampled.data(), dataBuffer, nBytesRecorded);
} break;
}
@@ -1090,11 +1167,11 @@ bool GGWave::decode(const void * data, uint32_t nBytes) {
}
// reset resampler state every minute
if (!m_rx.receiving && m_resampler->nSamplesTotal() > 60.0f*factor*m_sampleRate) {
m_resampler->reset();
if (!m_rx.receiving && m_resampler.nSamplesTotal() > 60.0f*factor*m_sampleRate) {
m_resampler.reset();
}
int nSamplesResampled = offset + m_resampler->resample(factor, nSamplesRecorded, m_rx.amplitudeResampled.data(), m_rx.amplitude.data() + offset);
int nSamplesResampled = offset + m_resampler.resample(factor, nSamplesRecorded, m_rx.amplitudeResampled.data(), m_rx.amplitude.data() + offset);
nSamplesRecorded = nSamplesResampled;
} else {
for (int i = 0; i < nSamplesRecorded; ++i) {
@@ -1156,13 +1233,7 @@ bool GGWave::txHasData() const { return m_tx.hasData; }
bool GGWave::txTakeAmplitudeI16(AmplitudeI16 & dst) {
if (m_tx.lastAmplitudeSize == 0) return false;
if ((int) dst.size() < m_tx.lastAmplitudeSize) {
ggprintf("GGWave::txTakeAmplitudeI16: dst buffer too small (%d < %d)\n", (int) dst.size(), m_tx.lastAmplitudeSize);
return false;
}
std::copy(m_tx.outputI16.begin(), m_tx.outputI16.begin() + m_tx.lastAmplitudeSize, dst.begin());
dst.assign({ m_tx.outputI16.data(), m_tx.lastAmplitudeSize });
m_tx.lastAmplitudeSize = 0;
return true;
@@ -1210,7 +1281,7 @@ int GGWave::rxTakeData(TxRxData & dst) {
m_rx.dataLength = 0;
if (res != -1) {
dst = m_rx.data;
dst.assign({ m_rx.data.data(), res });
}
return res;
@@ -1220,7 +1291,7 @@ bool GGWave::rxTakeSpectrum(Spectrum & dst) {
if (m_rx.hasNewSpectrum == false) return false;
m_rx.hasNewSpectrum = false;
dst = m_rx.spectrum;
dst.assign(m_rx.spectrum);
return true;
}
@@ -1229,7 +1300,7 @@ bool GGWave::rxTakeAmplitude(Amplitude & dst) {
if (m_rx.hasNewAmplitude == false) return false;
m_rx.hasNewAmplitude = false;
dst = m_rx.amplitude;
dst.assign(m_rx.amplitude);
return true;
}
@@ -1249,20 +1320,27 @@ bool GGWave::computeFFTR(const float * src, float * dst, int N) {
// GGWave::Resampler
//
GGWave::Resampler::Resampler() :
m_sincTable(kWidth*kSamplesPerZeroCrossing),
m_delayBuffer(3*kWidth),
m_edgeSamples(kWidth),
m_samplesInp(4096) {
makeSinc();
reset();
GGWave::Resampler::Resampler() {}
bool GGWave::Resampler::alloc(void * p, int & n) {
ggalloc(m_sincTable, kWidth*kSamplesPerZeroCrossing, p, n);
ggalloc(m_delayBuffer, 3*kWidth, p, n);
ggalloc(m_edgeSamples, kWidth, p, n);
ggalloc(m_samplesInp, 4096, p, n);
if (p) {
makeSinc();
reset();
}
return true;
}
void GGWave::Resampler::reset() {
m_state = {};
std::fill(m_edgeSamples.begin(), m_edgeSamples.end(), 0.0f);
std::fill(m_delayBuffer.begin(), m_delayBuffer.end(), 0.0f);
std::fill(m_samplesInp.begin(), m_samplesInp.end(), 0.0f);
m_edgeSamples.zero();
m_delayBuffer.zero();
m_samplesInp.zero();
}
int GGWave::Resampler::resample(
@@ -1401,7 +1479,7 @@ double GGWave::Resampler::sinc(double x) const {
//
void GGWave::decode_variable() {
m_rx.amplitudeHistory[m_rx.historyId] = m_rx.amplitude;
m_rx.amplitudeHistory[m_rx.historyId].copy(m_rx.amplitude);
if (++m_rx.historyId >= kMaxSpectrumHistory) {
m_rx.historyId = 0;
@@ -1410,8 +1488,9 @@ void GGWave::decode_variable() {
if (m_rx.historyId == 0 || m_rx.receiving) {
m_rx.hasNewSpectrum = true;
std::fill(m_rx.amplitudeAverage.begin(), m_rx.amplitudeAverage.end(), 0.0f);
for (auto & s : m_rx.amplitudeHistory) {
m_rx.amplitudeAverage.zero();
for (int j = 0; j < (int) m_rx.amplitudeHistory.size(); ++j) {
auto s = m_rx.amplitudeHistory[j];
for (int i = 0; i < m_samplesPerFrame; ++i) {
m_rx.amplitudeAverage[i] += s[i];
}
@@ -1434,9 +1513,9 @@ void GGWave::decode_variable() {
}
if (m_rx.framesLeftToRecord > 0) {
std::copy(m_rx.amplitude.begin(),
m_rx.amplitude.begin() + m_samplesPerFrame,
m_rx.amplitudeRecorded.data() + (m_rx.framesToRecord - m_rx.framesLeftToRecord)*m_samplesPerFrame);
memcpy(m_rx.amplitudeRecorded.data() + (m_rx.framesToRecord - m_rx.framesLeftToRecord)*m_samplesPerFrame,
m_rx.amplitude.data(),
m_samplesPerFrame*sizeof(float));
if (--m_rx.framesLeftToRecord <= 0) {
m_rx.analyzing = true;
@@ -1466,7 +1545,7 @@ void GGWave::decode_variable() {
continue;
}
std::fill(m_rx.spectrum.begin(), m_rx.spectrum.end(), 0.0f);
m_rx.spectrum.zero();
m_rx.framesToAnalyze = m_nMarkerFrames*stepsPerFrame;
m_rx.framesLeftToAnalyze = m_rx.framesToAnalyze;
@@ -1483,9 +1562,9 @@ void GGWave::decode_variable() {
break;
}
std::copy(
m_rx.amplitudeRecorded.begin() + offsetTx*step,
m_rx.amplitudeRecorded.begin() + offsetTx*step + m_samplesPerFrame, m_rx.fftOut.data());
memcpy(m_rx.fftOut.data(),
m_rx.amplitudeRecorded.data() + offsetTx*step,
m_samplesPerFrame*sizeof(float));
// note : should we skip the first and last frame here as they are amplitude-smoothed?
for (int k = 1; k < protocol.framesPerTx; ++k) {
@@ -1595,7 +1674,7 @@ void GGWave::decode_variable() {
m_rx.receiving = false;
m_rx.analyzing = false;
std::fill(m_rx.spectrum.begin(), m_rx.spectrum.end(), 0.0f);
m_rx.spectrum.zero();
m_rx.framesToAnalyze = 0;
m_rx.framesLeftToAnalyze = 0;
@@ -1645,7 +1724,7 @@ void GGWave::decode_variable() {
ggprintf("%sReceiving sound data ...\n", std::asctime(std::localtime(&timestamp)));
m_rx.receiving = true;
std::fill(m_rx.data.begin(), m_rx.data.end(), 0);
m_rx.data.zero();
// max recieve duration
m_rx.recvDuration_frames =
@@ -1720,7 +1799,7 @@ void GGWave::decode_fixed() {
}
for (int i = 1; i < m_samplesPerFrame/2; ++i) {
m_rx.spectrum[i] += m_rx.spectrum[m_samplesPerFrame - i];
amax = std::max(amax, m_rx.spectrum[i]);
amax = GG_MAX(amax, m_rx.spectrum[i]);
}
@@ -1732,14 +1811,14 @@ void GGWave::decode_fixed() {
// float -> uint8_t
//amax = 255.0f/(amax == 0.0f ? 1.0f : amax);
//for (int i = 0; i < m_samplesPerFrame; ++i) {
// m_rx.spectrumHistoryFixed[m_rx.historyIdFixed][i] = std::min(255.0f, std::max(0.0f, (float) round(m_rx.spectrum[i]*amax)));
// m_rx.spectrumHistoryFixed[m_rx.historyIdFixed][i] = GG_MIN(255.0f, GG_MAX(0.0f, (float) round(m_rx.spectrum[i]*amax)));
//}
// hence we opt for the uint16_t version, saving 2 times the memory and getting similar results as the floating-point version
// float -> uint16_t
amax = 65535.0f/(amax == 0.0f ? 1.0f : amax);
for (int i = 0; i < m_samplesPerFrame; ++i) {
m_rx.spectrumHistoryFixed[m_rx.historyIdFixed][i] = std::min(65535.0f, std::max(0.0f, (float) round(m_rx.spectrum[i]*amax)));
m_rx.spectrumHistoryFixed[m_rx.historyIdFixed][i] = GG_MIN(65535.0f, GG_MAX(0.0f, (float) round(m_rx.spectrum[i]*amax)));
}
if (++m_rx.historyIdFixed >= (int) m_rx.spectrumHistoryFixed.size()) {
@@ -1770,7 +1849,7 @@ void GGWave::decode_fixed() {
}
const int nTones = 2*protocol.bytesPerTx;
std::fill(m_rx.detectedBins.begin(), m_rx.detectedBins.end(), 0);
m_rx.detectedBins.zero();
int txNeededTotal = 0;
int txDetectedTotal = 0;
@@ -1778,7 +1857,7 @@ void GGWave::decode_fixed() {
for (int k = 0; k < totalTxs; ++k) {
if (k % protocol.extra == 0) {
std::fill(m_rx.detectedTones.begin(), m_rx.detectedTones.begin() + 16*nTones, 0);
m_rx.detectedTones.zero(16*nTones);
}
for (int i = 0; i < protocol.framesPerTx; ++i) {
@@ -1890,7 +1969,7 @@ int GGWave::maxFramesPerTx(const Protocols & protocols, bool excludeMT) const {
if (excludeMT && protocol.extra > 1) {
continue;
}
res = std::max(res, protocol.framesPerTx*protocol.extra);
res = GG_MAX(res, protocol.framesPerTx*protocol.extra);
}
return res;
}
@@ -1902,7 +1981,7 @@ int GGWave::minBytesPerTx(const Protocols & protocols) const {
if (protocol.enabled == false) {
continue;
}
res = std::min(res, (int) protocol.bytesPerTx);
res = GG_MIN(res, (int) protocol.bytesPerTx);
}
return res;
}
@@ -1914,7 +1993,7 @@ int GGWave::maxBytesPerTx(const Protocols & protocols) const {
if (protocol.enabled == false) {
continue;
}
res = std::max(res, (int) protocol.bytesPerTx);
res = GG_MAX(res, (int) protocol.bytesPerTx);
}
return res;
}
@@ -1926,7 +2005,7 @@ int GGWave::maxTonesPerTx(const Protocols & protocols) const {
if (protocol.enabled == false) {
continue;
}
res = std::max(res, protocol.nTones());
res = GG_MAX(res, protocol.nTones());
}
return res;
}

View File

@@ -12,6 +12,7 @@
#include <assert.h>
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
namespace RS {
@@ -39,7 +40,7 @@ public:
heap_memory = heap_memory_p;
owns_heap_memory = false;
} else {
heap_memory = new uint8_t[getWorkSize_bytes(msg_length, ecc_length)];
heap_memory = (uint8_t *) malloc(getWorkSize_bytes(msg_length, ecc_length));
owns_heap_memory = true;
}
generator_cache = heap_memory;