mirror of
https://github.com/ggerganov/ggwave.git
synced 2026-02-07 01:11:22 +08:00
162 lines
4.8 KiB
C++
162 lines
4.8 KiB
C++
#include "resampler.h"
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
namespace {
|
|
double linear_interp(double first_number, double second_number, double fraction) {
|
|
return (first_number + ((second_number - first_number)*fraction));
|
|
}
|
|
}
|
|
|
|
Resampler::Resampler() :
|
|
m_sincTable(kWidth*kSamplesPerZeroCrossing),
|
|
m_delayBuffer(3*kWidth),
|
|
m_edgeSamples(kWidth),
|
|
m_samplesInp(2048) {
|
|
make_sinc();
|
|
reset();
|
|
}
|
|
|
|
void Resampler::reset() {
|
|
m_state = {};
|
|
std::fill(m_edgeSamples.begin(), m_edgeSamples.end(), 0.0f);
|
|
std::fill(m_delayBuffer.begin(), m_delayBuffer.end(), 0.0f);
|
|
std::fill(m_samplesInp.begin(), m_samplesInp.end(), 0.0f);
|
|
}
|
|
|
|
int Resampler::resample(
|
|
float factor,
|
|
int nSamples,
|
|
const float * samplesInp,
|
|
float * samplesOut) {
|
|
int idxInp = -1;
|
|
int idxOut = 0;
|
|
int notDone = 1;
|
|
float data_in = 0.0f;
|
|
float data_out = 0.0f;
|
|
double one_over_factor = 1.0;
|
|
|
|
auto stateSave = m_state;
|
|
|
|
m_state.nSamplesTotal += nSamples;
|
|
|
|
if (samplesOut) {
|
|
assert(nSamples > kWidth);
|
|
if ((int) m_samplesInp.size() < nSamples + kWidth) {
|
|
m_samplesInp.resize(nSamples + kWidth);
|
|
}
|
|
for (int i = 0; i < kWidth; ++i) {
|
|
m_samplesInp[i] = m_edgeSamples[i];
|
|
m_edgeSamples[i] = samplesInp[nSamples - kWidth + i];
|
|
}
|
|
for (int i = 0; i < nSamples; ++i) {
|
|
m_samplesInp[i + kWidth] = samplesInp[i];
|
|
}
|
|
samplesInp = m_samplesInp.data();
|
|
}
|
|
|
|
while (notDone) {
|
|
while (m_state.timeLast < m_state.timeInt) {
|
|
if (++idxInp >= nSamples) {
|
|
notDone = 0;
|
|
break;
|
|
} else {
|
|
data_in = samplesInp[idxInp];
|
|
}
|
|
//printf("xxxx idxInp = %d\n", idxInp);
|
|
if (samplesOut) new_data(data_in);
|
|
m_state.timeLast += 1;
|
|
}
|
|
|
|
if (notDone == false) break;
|
|
|
|
double temp1 = 0.0;
|
|
int left_limit = m_state.timeNow - kWidth + 1; /* leftmost neighboring sample used for interp.*/
|
|
int right_limit = m_state.timeNow + kWidth; /* rightmost leftmost neighboring sample used for interp.*/
|
|
if (left_limit < 0) left_limit = 0;
|
|
if (right_limit > m_state.nSamplesTotal + kWidth) right_limit = m_state.nSamplesTotal + kWidth;
|
|
if (factor < 1.0) {
|
|
for (int j = left_limit; j < right_limit; j++) {
|
|
temp1 += gimme_data(j - m_state.timeInt)*sinc(m_state.timeNow - (double) j);
|
|
}
|
|
data_out = temp1;
|
|
}
|
|
else {
|
|
one_over_factor = 1.0 / factor;
|
|
for (int j = left_limit; j < right_limit; j++) {
|
|
temp1 += gimme_data(j - m_state.timeInt)*one_over_factor*sinc(one_over_factor*(m_state.timeNow - (double) j));
|
|
}
|
|
data_out = temp1;
|
|
}
|
|
|
|
if (samplesOut) {
|
|
//printf("inp = %d, l = %d, r = %d, n = %d, a = %d, b = %d\n", idxInp, left_limit, right_limit, m_state.nSamplesTotal, left_limit - m_state.timeInt, right_limit - m_state.timeInt - 1);
|
|
samplesOut[idxOut] = data_out;
|
|
}
|
|
++idxOut;
|
|
|
|
m_state.timeNow += factor;
|
|
m_state.timeLast = m_state.timeInt;
|
|
m_state.timeInt = m_state.timeNow;
|
|
while (m_state.timeLast < m_state.timeInt) {
|
|
if (++idxInp >= nSamples) {
|
|
notDone = 0;
|
|
break;
|
|
} else {
|
|
data_in = samplesInp[idxInp];
|
|
}
|
|
if (samplesOut) new_data(data_in);
|
|
m_state.timeLast += 1;
|
|
}
|
|
//printf("last idxInp = %d, nSamples = %d\n", idxInp, nSamples);
|
|
}
|
|
|
|
if (samplesOut == nullptr) {
|
|
m_state = stateSave;
|
|
}
|
|
|
|
return idxOut;
|
|
}
|
|
|
|
float Resampler::gimme_data(int j) const {
|
|
return m_delayBuffer[(int) j + kWidth];
|
|
}
|
|
|
|
void Resampler::new_data(float data) {
|
|
for (int i = 0; i < kDelaySize - 5; i++) {
|
|
m_delayBuffer[i] = m_delayBuffer[i + 1];
|
|
}
|
|
m_delayBuffer[kDelaySize - 5] = data;
|
|
}
|
|
|
|
void Resampler::make_sinc() {
|
|
double temp, win_freq, win;
|
|
win_freq = M_PI/kWidth/kSamplesPerZeroCrossing;
|
|
m_sincTable[0] = 1.0;
|
|
for (int i = 1; i < kWidth*kSamplesPerZeroCrossing; i++) {
|
|
temp = (double) i*M_PI/kSamplesPerZeroCrossing;
|
|
m_sincTable[i] = sin(temp)/temp;
|
|
win = 0.5 + 0.5*cos(win_freq*i);
|
|
m_sincTable[i] *= win;
|
|
}
|
|
}
|
|
|
|
double Resampler::sinc(double x) const {
|
|
int low;
|
|
double temp, delta;
|
|
if (fabs(x) >= kWidth - 1) {
|
|
return 0.0;
|
|
} else {
|
|
temp = fabs(x)*(double) kSamplesPerZeroCrossing;
|
|
low = temp; /* these are interpolation steps */
|
|
delta = temp - low; /* and can be ommited if desired */
|
|
return linear_interp(m_sincTable[low], m_sincTable[low + 1], delta);
|
|
}
|
|
}
|